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A B S T R A C T

Self-driving laboratories and automated experiments can accelerate the design workflow and decrease errors 
associated with experiments that characterize membrane transport properties. Within this study, we use 3D 
printing to design a custom stirred cell that incorporates inline conductivity probes in the retentate and permeate 
streams. The probes provide a complete trajectory of the salt concentrations as they evolve over the course of an 
experiment. Here, automated diafiltration experiments are used to characterize the performance of commercial 
NF90 and NF270 polyamide membranes over a predetermined range of KCl concentrations from 1 to 100 mM. 
The measurements obtained by the inline conductivity probes are validated using offline post-experiment ana-
lyses. Compared to traditional filtration experiments, the probes decrease the amount of time required for an 
experimentalist to characterize membrane materials by more than 50× and increase the amount of information 
generated by 100×. Device design principles to address the physical constraints associated with making con-
ductivity measurements in confined volumes are proposed. Overall, the device developed within this study 
provides a foundation to establish high-throughput, automated membrane characterization techniques.

Further advances across multiple scales are needed to produce 
solute-selective membranes for use in the wide range of applications. 
(Eugene et al., 2019) For instance, membranes capable of distinguishing 
between lithium and other monovalent ions could help intensify lithium 
extraction processes. (Sholl and Lively, 2016; Lair et al., 2024) Mem-
branes capable of transporting protons, while restricting the transport of 
other cations, can enhance the lifetime and efficiency of redox flow 
batteries. (Tang and Bruening, 2020) In biomedical applications, 
membranes could be used to purify racemic mixtures and selectively 
remove low molecular weight solutes from solution (e.g., urea in dial-
ysis). (Baker, 2023)

Principled design of fit-for-purpose membranes and processes re-
quires relationships that bridge nanoscale and molecular design to 
membrane performance on the module and system scale. The solute flux, 
which is critical to the performance of solute-selective processes, can be 
described as the product of the transmembrane concentration difference 
and the solute permeability coefficient, B (Eq. (1)). 

Js = BΔc (1) 

In this form, information contained within B links multiple length 

scales. As a lumped parameter, it can inform system scale design. 
Alternatively, first principles can elucidate its molecular origins 
(Kamcev et al., 2018), provide insight into its concentration de-
pendencies (Summe et al., 2018), and guide the reverse engineering of 
membrane materials. (Kitto and Kamcev, 2023) Advancing both uses 
requires data that captures the effect of feed concentration and 
composition on B. Developing these structure-property relationships 
will be especially important in emerging systems that tune 
membrane-solute interactions to achieve solute-selective separations. 
(Summe et al., 2018; Zofchak et al., 2022; Sheng et al., 2014; Gao et al., 
2019; Wang et al., 2024)

Developing quantitative relationships between transport parameters, 
solution chemistry, and membrane identity can be accelerated by 
generating large volumes of high-fidelity data that feed into physics- 
based or machine learning frameworks. (Agi et al., 2024) As one 
example, self-driving laboratories (SDLs) combine automated experi-
ment and characterization techniques with machine learning to deter-
mine and execute the most informative experiments. In this manner, 
SDLs drive material discovery and optimization while promoting an 
end-to-end workflow that saves time, energy, and resources. 
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(Abolhasani and Kumacheva, 2023; Seifrid et al., 2022; B. Rooney et al., 
2022; MacLeod et al., 2020) A key advantage of automated experi-
mentation is an increase in the data quality that stems from the reduc-
tion in experimental error and meticulous monitoring of experimental 
conditions (Mullins et al., 2024; Christopher, 2020); these benefits are 
critical to creating curated data sets that can be shared amongst re-
searchers. (National Academies of Sciences, Engineering, and Medicine, 
2019) To employ this paradigm to membranes, high-throughput ex-
periments that use in-situ characterization techniques to quantify the 
solute flux and driving force must be developed. (Ignacz et al., 2023)

Automated diafiltration experiments can rapidly characterize 

membranes over predetermined ranges of concentrations. Operating in 
the concentrating regime, diafiltration experiments systematically dose 
a high-concentration diafiltrate into a stirred cell initially containing a 
low-concentration feed solution (Fig. 1A). (Ouimet et al., 2022; Muetzel 
et al., 2022; Kilmartin et al., 2021) As the experiment progresses, the 
flow of the diafiltrate into the retentate increases the concentration of 
solute within the stirred cell. By controlling the concentrations of the 
initial feed and diafiltrate solutions, membrane materials are charac-
terized as the solute concentration in the retentate spans from low to 
high values. (Kilmartin et al., 2021) This study designs a custom stirred 
cell that incorporates inline conductivity probes to continuously 

Fig. 1. A schematic of the diafiltration apparatus. A. The diafiltration apparatus is composed of three components: (1) A diafiltrate tank that contains the diafiltrate 
solution, (2) a modified, 3D printed stirred cell that holds a 4.1 cm2 membrane sample, and (3) an automated vial collection system. Initially, the reservoir of the 
stirred cell is filled with the feed solution. Pressure is applied to the diafiltrate tank to start the experiment. The applied pressure pushes the diafiltrate solution 
towards the inlet of the stirred cell and drives the solution through the membrane. The diafiltration apparatus is engineered such that for every drop of solution that 
permeates through the membrane, one drop of diafiltrate solution enters the stirred cell. The permeate solution is collected in scintillation vials that rest on top of a 
balance. B. A cross-section of the modified stirred cell shows the placement of the conductivity probes within the retentate and permeate reservoirs. Both bulk 
reservoirs are well mixed by magnetic stir bars. Position #1 corresponds to the solution-membrane interface, and position #2 corresponds to the entrance of the 
permeate reservoir. The concentration at position #1 and position #2 are determined using the conductivity probe measurements. The solute flux is directly related 
to the solute concentration at these two positions. C. Conductivity data from the retentate and permeate probes (blue and black data points, respectively) are plotted 
versus time. The average concentrations of the retentate and permeate solutions for each vial are represented by the unfilled blue and black circular points, 
respectively. Conductivity and ICP-OES measurements for the scintillation vials, taken at the completion of the experiment, are represented as red crosses and di-
amonds, respectively.
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monitor the concentration of these solutions to reduce the time demand 
on experimentalists and increase the amount of information generated.

3D printing enables the creation of a custom stirred cell with inte-
grated sensors. Fig. 1B presents a cross section of the stirred cell that was 
created to possess inline retentate and permeate conductivity probes. 
Four electrode LFS conductivity probes, which were selected for their 
compact design, enable conductivity measurements within small solu-
tion volumes. The custom stirred cell, and all associated parts, were 
designed in SolidWorks and printed on a FormLabs 3+ resin printer. A 
link to the GitHub repository with editable SolidWorks files, information 
on print orientation (Fig. S1), post-processing steps (Fig. S2), and device 

assembly (Fig. S3) is provided in the Supplementary Information.
The data generated by the inline conductivity probes is corroborated 

by measurements obtained from analyzing aliquots of the permeate and 
retentate solution after an experiment concludes. A diafiltration exper-
iment that used a 1 mM KCl feed and 100 mM KCl diafiltrate to char-
acterize an NF90 membrane demonstrates this validation (Fig. 1C). 
Details regarding the experimental procedure are included within the 
Supplementary Information. During this experiment, the conductivity 
probe readings were recorded at 5-second intervals. Additionally, 10 
scintillation vials, each possessing 1.00±0.05 g of solution, were 
collected. As the experiment progresses, the time necessary to fill each 
vial increases (Fig. 1C, vertical lines). This increase is attributed to an 
increase in the osmotic pressure of the retentate, and consequently a 
decrease in the volumetric water flux. After the experiment, the KCl 
concentration in each vial was determined using conductivity (red 
crosses) and inductively coupled plasma optical emission spectroscopy 
(ICP OES) (red diamonds). The concentrations obtained by analyzing the 
scintillation vials closely align with the data from the inline conductivity 
probe (black data points).

Fig. 2A extends this analysis to multiple membrane samples. Here, 
the retentate and permeate concentrations are reported on the hori-
zontal and vertical axes, respectively. The square data points correspond 
to triplicate experiments previously reported in literature. (Ouimet 
et al., 2022) For each data set, the permeate concentration is obtained by 
analyzing the scintillation vials after the experiment, and the retentate 
concentration is calculated from the volume average concentration of 
the retentate conductivity. Experiments conducted with the inline con-
ductivity probes are graphed as circular data points with the shades of 
blue representing experiments on two distinct membranes. The high 
density of data makes the points appear as a solid line. The vertical 
scatter between the membrane samples is likely due to differences in the 
volumetric flux, Jw. One way to account for the influence of Jw on the 
data is to compare Js as a function of the interface concentration on the 
upstream side of the membrane. Here, the interface concentration is 
calculated using a thin film model that accounts for the effects of con-
centration polarization (see Supporting Information). By comparing the 
solute flux as a function of the interface concentration, the data sets 
collapse on top of one another (Fig. 2B). To ensure this trend was 
consistent across membranes with varying hydraulic permeabilities, the 
same analysis was conducted on commercial NF270 membranes, which 
possess hydraulic permeabilities that are 4× higher than the NF90 
membrane (i.e., NF90: 3 L m-2 h-1 bar-1 and NF270: 12 L m-2 h-1 bar-1). 
The crossed, dotted, and partially-filled triangles correspond to three 
NF270 membranes where the permeate vials were analyzed after the 
experiment; the circular data points (various shades of pink) correspond 
to data obtained with the inline probes. The close alignment between the 
in-situ and post-experiment analyses across membrane types and sam-
ples validates the permeate probe device.

A unique strength of the permeate probe device is the generation of 
data at low retentate concentrations. Understanding the phenomena 
that govern membrane-solute interactions in dilute solutions is impor-
tant when target solutes are found at trace concentrations, e.g., lithium 
recovery (Lair et al., 2024). When the permeate probe is not used, the 
concentration measured for each vial represents an average over all the 
permeate fluid collected. Therefore, the retentate conductivity data 
must be reduced to a volume average measurement to correlate it with 
the permeate concentration (Fig. 2, square and triangular data). This 
data reduction hinders membrane characterization at low concentra-
tions. For instance, when characterizing NF90 membranes using a 5 mM 
KCl feed and 80 mM KCl diafiltrate, the average retentate concentration 
of the first vial was ~15 mM (Fig. 2). Similar trends are seen in the data 
for the NF270 membrane. While additional experiments with a 1 mM 
KCl feed and a 12 mM KCl diafiltrate (Fig. 2, lime green triangles) could 
be performed, the implementation of the permeate probe provides an 
equal number of measurements for both solutions enabling the full 
trajectory of membrane performance to be obtained in a single 

Fig. 2. Diafiltration experiments characterizing the performance of NF90 and 
NF270 membranes. The squares (NF90) (Ouimet et al., 2022) and triangles 
(NF270) correspond to diafiltration experiments where permeate vial concen-
trations were determined with ICP-OES after the experiment was completed. 
Every color corresponds to an experiment conducted on a unique membrane 
sample. The NF90 membranes were characterized using 5 mM feed & 80 mM 
diafiltrate KCl solutions. 1 mM/12 mM or 15 mM/120 mM KCl feed/diafiltrate 
solutions were used to characterize the NF270 membranes. Data obtained from 
the permeate probe apparatus are represented by circular data points (NF90: 
shades of blue, NF270: shades of pink). Within the experiments that used a 
permeate probe, a 1 mM KCl feed and 80 mM KCl diafiltrate was used to 
characterize both the NF90 and NF270 membranes. Experimentally measured 
concentration data are plotted within Panel A. To account for the effect of water 
flux, Panel B compares the solute flux (Js ≅ Jwcp) as a function of the interface 
concentration.
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experiment.
In addition to the high density of data generated, the permeate probe 

device dramatically reduces the time it takes an experimenter to char-
acterize a membrane (Table S1). For instance, it takes an experimenter 
approximately 47 h to characterize ion permeation through an NF90 
membrane using traditional filtration experiments. (Ouimet et al., 2022) 
By conducting a diafiltration experiment with the permeate probe de-
vice, characterizing the transport parameters of the same membrane can 
require as little as 40 min (Table S1). Automating data collection and 
analysis results in a more than 50× decrease in the time required by an 
experimentalist. The automated vial collection system means that an 
experimentalist does not need to be present throughout the course of an 
experiment and, for single salt studies, the continuous monitoring of the 
retentate and permeate conductivities removes the need to prepare 
samples for post-experiment analysis. Due to the automated data 
collection, the experiments generate curated data sets. Specifically, an 
in-house MATLAB code was created to process the data and account for 
the lag between the permeate conductivity reading and the permeate 
collected within each vial. Processing data in this manner further de-
creases the time requirements on the experimentalist.

Generating high-density data sets in a rapid manner also reduces the 
uncertainty associated with regressing transport parameters. To illus-
trate this, the transport parameters for an NF90 membrane character-
ized with a 1 mM KCl feed and 100 mM KCl diafiltrate (Fig. 1C) were 
regressed (Table S2) using two data set variations (Ouimet et al., 2022; 
Liu et al., 2022); the first data set uses the inline conductivity mea-
surements provided by the permeate probe, the second set omits the 
conductivity measurements and uses ICP-OES analysis. Importantly, the 
hydraulic permeability, Lp, solute permeability coefficient, B, and 
reflection coefficient, σ, regressed within this study (Lp = 3.56 L m-2 h-1 

bar-1, B = 0.22 µm s-1, and σ = 1) closely align with regressed parameters 
from previous studies (Lp = 3.18 - 4.37 L m-2 h-1 bar-1, B = 0.31 - 0.78 µm 
s-1 and σ = 1). (Ouimet et al., 2022; Al-Zoubi et al., 2007) The Fisher 
information matrices (FIMs) (Rothenberg, 1971; Franceschini and 
Macchietto, 2008; Befort et al., 2023; Wang and Dowling, 2022) and 
their eigen decompositions for the two variations are compared in 
Table 1. All of the elements of the FIMs are larger for the data set that 
uses the inline permeate probe indicating that the probe measurements 
provide information that is not contained within the ICP-OES data set.

Analysing the eigen decomposition of the FIM indicates which 
parameter can be reliably estimated. For example, the largest eigenvalue 
for the permeate probe data set is 2.97 × 109 and its corresponding 
eigenvector is in the direction of parameter B. This indicates B can be 
estimated with the greatest precision. Similarly, in the data set that only 
uses ICP-OES measurements, the eigenvalue of 6.73 × 106 is predomi-
nantly in the direction of B.

Comparing the ratio of these eigenvalues reveals data obtained from 

the permeate probe contains (2965.49/6.73 ≈) 440 times more infor-
mation about B than using only ICP-OES measurements. Similarly, the 
permeate probe data contains (2.71/0.89 ≈) 3.0 and (74.86/89.89 ≈) 
0.83 times the information about Lp and σ, respectively.1 The significant 
improvement in information content indicates that incorporating the 
permeate probe reduces the uncertainty associated with regressing the 
transport parameters. Improved precision, especially for the solute 
permeability coefficient, will be critical as researchers engineer nano-
scale membrane-solute interactions to create solute selective 
membranes.

Model-based design of experiments (MBDoE) frameworks select the 
optimal sequence of experiments to increase parameter precision. 
(Wang and Dowling, 2022) MBDoE practitioners choose between a 
handful of optimality criteria, i.e., functions that convert the FIM into a 
scalar measure of information content. These criteria, and gains in in-
formation associated with each, are discussed within the supplementary 
information (Table S3).

The permeate probe device was carefully engineered to ensure that 
the advantages detailed above could be leveraged to their fullest. 
Achieving this aim required designing around the physical constraints 
associated with making accurate conductivity measurements in small 
volumes. Specifically, a minimum volume of solution (~100 µL) above 
the sensor is required by the manufacturer. (Schonstein et al) Our ex-
periments also demonstrate that this reservoir should be well-mixed. 
Both criteria are met within the design presented in Fig. S4. Solution 
that permeates through the membrane is directed to a reservoir that 
contains the conductivity probe and a stir bar. The stir bar is essential to 
keeping the solution well mixed (Fig. S5). Importantly, the stir bar is 
positioned so that its magnetic field does not influence the conductivity 
readings. For this device, the magnetic field decays as r-3 where r is the 
radius of the stir bar magnet. (Thomaszewski et al., 2008; Ziff-Davis 
Publishing 1983) Consequently, the stir bar is placed 2.8 mm (~3.5 
radii) away from the conductivity probe (Fig. S6). Additionally, to 
minimize bubble formation, the stir bar is held in a custom, 
plasma-treated holder (Fig. S7).

With the device geometry established and performance validated, we 
turn our attention to relating the flux of solute to the diffusive driving 
force across the membrane, Eq. (1). The concentration of ions at the 
membrane-solution interface (position 1) and downstream permeate 
(position 2) must be known to calculate the diffusive driving force. The 
interface concentration accounts for the effects of concentration polar-
ization and can be calculated from the retentate concentration using a 
thin film model. (Zeman and Zydney, 2017) The concentration of the 
permeate solution entering the reservoir can be calculated using a mass 
balance that relates it to the conductivity of the solution measured by 
the probe.

The start-up process for a filtration experiment illustrates the 

Table 1 
The FIM, and its corresponding eigenvalues and eigenvectors, are calculated for a diafiltration experiment. Two different data sets are used to analyse the experiment. 
The first data set includes the inline permeate conductivity probe data, the second data set omits the permeate probe data and only uses the ICP OES measurements to 
obtain the permeate vial concentrations.

Data Set FIM (× 106) Eigenvalues (× 106) Eigenvectors

Lp B σ Lp B σ

Inline 
Permeate Probe

⎡

⎣
7.55 89.86 − 9.75
89.86 2960.60 79.27
− 9.75 79.27 74.91

⎤

⎦
2.71 [0.98 − 0.03 0.17]
74.86 [0.17 0.02 − 0.98]
2965.49 [0.03 1 0.03]

ICP-OES
⎡

⎣
4.43 4.42 − 13.51
4.42 23.48 − 33.96

− 13.51 − 33.96 69.61

⎤

⎦
0.89 [0.88 0.34 0.34]
6.73 [0.45 − 0.82 − 0.35]
89.89 [0.16 0.46 − 0.87]

1 We caution these information gains are approximations. For example, ac-
counting for any time-series correlations in the measurement error of the 
conductivity probes will likely decrease information gains.
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importance of this consideration (Fig. 3). Before the experiment starts, 
the permeate reservoir is rinsed with DI water resulting in an initial 
conductivity reading less than 20 µS cm-1. Subsequently, a 10 mM KCl 
feed solution is placed in the reservoir of the stirred cell and pressurized. 
As the solution permeates through the membrane, the DI water in the 
permeate reservoir is displaced by KCl-containing permeate. As a result, 
the conductivity measurement increases sharply during the initial 500 s 
(Fig. 3A, black line). This transition is not instantaneous; a finite amount 
of time is required for the KCl-containing permeate to reach the sensing 
chamber and displace the DI water. The gradual increase in the 

permeate concentration after this initial period is driven by the 
increasing retentate concentration. Over the course of the filtration 
experiment, the retentate concentration increases by ~15% because the 
membrane retains KCl (rejection ~40%) and the volume of the retentate 
solution decreases.

A mass balance is written (Eq. (2)) to calculate the initial lag asso-
ciated with displacing the DI water in the reservoir. 

d
(
Vpcp

)

dt
= JwAmcLs

p − JwAmcp (2) 

cLs
p =

Vp

JwAm

dcp

dt
+ cp (3) 

Here, cLs
p and cp are the concentration of the solution entering the 

reservoir and the concentration measured by the conductivity probe, 
respectively. Vp is the volume of the permeate reservoir and Am is the 
membrane area. Because Vp is constant, Eq. (2) can be rearranged (Eq. 
(3)) to demonstrate that the residence time, τ =

Vp
JwAm

, defines the 
response rate of the reservoir. Reassuringly, in the limit that Vp→0, and 
thus τ→0, there is no lag, and cLs

p = cp.
The residence time of the permeate probe device was validated using 

a series of filtration experiments. The regressed value of τ (see SI for 
discussion) is compared to the residence time determined from the cell 
geometry in Fig. 3B. Experiments were conducted on NF90 and NF270 
membranes at a range of applied pressures to span volumetric fluxes 
between 2 – 32 L m-2 h-1. The regressed τ values closely match theo-
retical residence times Fig. 3B, confirming that Eq. (3) can be used to 
calculate the concentration of ions entering the permeate reservoir. 
Furthermore, these results demonstrate that for thin membranes, the 
residence time in the reservoir is much greater than the characteristic 
time associated with solute transport through the membrane (τmembrane). 
Specifically, while the residence time of the reservoir was on the order of 
1–100 min, for nanofiltration membranes that are several hundred 
nanometers thick with B ~0.2 µm⋅s-1, (Ouimet et al., 2022) τmembrane < 1 
s. Therefore, the membrane can be assumed to operate at pseudo-steady 
state.

The field of membrane separations is poised to experience a para-
digm shift in which automated experimentation and data science will 
increase the rate of material and process discovery. Here, 3D printing 
allowed for the creation of a custom stirred cell device that overcomes 
the physical constraints associated with making accurate conductivity 
measurements in small volumes. When combined with automated dia-
filtration experiments, the device can systematically explore membrane 
performance over a wide concentration range. As such, the work out-
lined here provides a foundation for automating membrane character-
ization techniques and creating self-driving laboratories.
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