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ABSTRACT2

We present global predictions of the ground state mass of atomic nuclei based on a novel3
Machine Learning (ML) algorithm. We combine precision nuclear experimental measurements4
together with theoretical predictions of unmeasured nuclei. This hybrid data set is used to train a5
probabilistic neural network. In addition to training on this data, a physics-based loss function is6
employed to help refine the solutions. The resultant Bayesian averaged predictions have excellent7
performance compared to the testing set and come with well-quantified uncertainties which8
are critical for contemporary scientific applications. We assess extrapolations of the model’s9
predictions and estimate the growth of uncertainties in the region far from measurements.10
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1 INTRODUCTION

Mass is a defining quantity of an atomic nucleus and appears ubiquitously in research efforts ranging from13
technical applications to scientific studies such as the synthesis of the heavy elements in astrophysical14
environments [1, 2]. While accurate nuclear data of masses is available for nuclei that are relatively stable,15
the same is not true for nuclei farther away from beta stability because measurements on radioactive nuclei16
are exceedingly challenging [3]. As a consequence, theoretical models of atomic nuclei are required for17
extrapolations used in present-day scientific applications [4].18

The goal of theoretical nuclear models is to describe all atomic nuclei (from light to heavy) using19
fundamental interactions. Attainment of this challenging goal remains elusive, however, due to the sheer20
complexity of modeling many-body systems with Quantum Chromodynamics [5]. To understand the range21
of nuclei that may exist in nature, mean-field approximations are often made which simplify complex22
many-body dynamics into a non-interacting system of quasi-particles where remaining residual interactions23
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can be added as perturbations [6]. A consequence of this approximation is that current nuclear modeling24
efforts are unable to describe the rich correlations that are found across the chart of nuclides.25

In contrast, Machine Learning (ML) based approaches do not have to rely on the assumption of modeling26
nuclei from a mean-field. This provides freedom in finding solutions that contemporary modeling may27
not be capable of ascertaining. Furthermore, Bayesian approaches to ML afford the ability to associate28
predictions with uncertainties [7, 8]. Such tasks are more difficult to achieve in modern nuclear modeling29
due to relatively higher computational costs.30

ML approaches in nuclear physics were pioneered by J.W. Clark and colleagues [9, 10]. These studies31
were the first to show that networks could approximate stable nuclei, learn to predict masses and analyze32
nuclear systematics of separation energies as well as spin-parity assignments [11, 12]. Powered by open-33
source frameworks, research into ML methods has seen a recent resurgence in nuclear physics [13]. ML34
approaches have shown promise in optimizing data and experiments [14], building surrogate models of35
density functional theory [15], and describing quantum many-body wave functions for light nuclei[16, 17].36

Several research groups are actively pursuing the problem of describing nuclear systems with ML from a37
more data-centric approach. These efforts currently attempt to improve existing nuclear models by adding38
correction terms [18]. Gaussian Processes (GP) have also been used for model averaging [19], but this39
approach is inherently limited to where data is known as GP methods typically revert to the mean when40
extrapolating. A further limitation to training ML models on residuals (or the discrepancy of theoretical41
model predictions with experimental data) is that the methods are arbitrary. The changes learned by the42
network to improve one model will not be applicable to another. These approaches thus provide limited43
insight into the underlying missing physics in modern models of the atomic nucleus.44

In Lovell et al. [20], a different approach was taken, where the masses of atomic nuclei were modeled45
directly with a neural network. It was shown that the masses of nuclei can be well described, and model46
predictions with increased fidelity correlate strongly with a careful selection of physically motivated input47
features. The selection of input features is especially important in ML applications [21, 22]. Following this48
work, Mumpower et al. [23] showed that the size of the training set can greatly be reduced, and the fidelity49
of model solutions increases drastically, when an additional physical constraint is introduced as a second50
loss function during model training.51

The focus of this work is to present a Bayesian approach for combining precision data with theoretical52
predictions to model the mass of atomic nuclei. In Section 2, we present our ML algorithm and define the53
model hyperparameters. In Section 3, we show the results of our approach and assess the quality of model54
extrapolations. We end with a short summary.55

2 METHODS

In this section, we outline our methodology: describe the neural network, define our physics-based feature56
space, list model hyperparameters, and discuss training.57

2.1 Mixture Density Network58

In a feed-forward neural network, inputs, x, are mapped to outputs, y, in a deterministic manner. We59
employ the Mixture Density Network (MDN) of Bishop [24] which differs from the standard approach.60
This ML network takes as inputs stochastic realizations of probability distributions and maps this to a61
mixture of Gaussians. Thus, the network fundamentally respects the probabilistic nature of both known62
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data and model predictions by both sampling the prior distribution of inputs and predicting the posterior63
distribution of the outputs.64

Formally, the conditional probability can be written as65

p(y|x) =
K∑
i=1

πi(x)N (y|µi(x), Iσi(x)) , (1)

where N is the normal distribution with means, µi(x), and standard deviations, σi(x). The πi(x) represent66
the weighting of each Gaussian respectively. The covariance matrix is assumed to be diagonal, as indicated67
by the use of the notation Iσi.68

The neural network outputs are π, µ, and σ which depend only on the input training set information x69
and the network weights. For ease of reading the equation we have kept the dependence of the network70
weights implicit.71

The hyperbolic tangent function a(z) = ez−e−z

ez+e−z is used as the activation function for the neurons in the72
linear layers of the network . At the final layer a softmax function is used for the πi so that the previous73
layer’s output can be mapped to a vector that sums to unity. This choice ensures that the mixture of74
Gaussians can be safely interpreted as a probability. Our MDN uses the PyTorch Paszke et al. [25]75
framework and can be run on either CPU or GPU architectures.76

2.2 Physics-based feature space77

We now discuss the components of the input vector, x. The ground state of an atomic nucleus comprises78
Z protons and N neutrons. While it is reasonable to start from these two independent features as inputs,79
[21] and Lovell et al. [20] reported that a modestly larger physics-based feature space drastically improves80
the prediction of masses. For this reason, we employ a combination of macroscopic and microscopic81
features that are of relevance to low-energy nuclear physics properties.82

In addition to the proton number Z and neutron number N , we also use the mass number A = Z +N ,83
and a measure of isospin asymmetry, Pasym = N−Z

A , as relevant macroscopic features. For the microscopic84
features that encode the quantized nature of atomic nuclei, we employ notions of pairing by considering85
the even-odd behavior of the proton, neutron, and mass numbers. This can calculated by observing the86
binary values of these quantities modulo 2; Zeo = Z ÷ 2 , Neo = N ÷ 2, Aeo = A÷ 2. A notion of shell87
structure is also important. To encode this information we include the number of valence nucleons or holes88
(beyond the mid-shell) from the nearest major closed shell for protons, Vp, and neutrons, Vn, respectively.89
The value of Vp or Vn is zero at a closed shell and reaches a maximum at the mid-shell. The number of90
valence nucleons is correlated with more complex excitations in nuclei, including collective behavior that91
may appear [26, 27]. The closed proton shells are set to 8, 20, 28, 50, 82, and 114. The closed neutron92
shells are set to 8, 20, 28, 50, 82, 126 and 184. These choices are free parameters in our modeling and can93
be modified to explore different physics.94

The input feature space is then a nine component vector:95

x = (Z,N,A, Pasym, Zeo, Neo, Aeo, Vp, Vn) , (2)

where the first four components can be considered macroscopic features and the last five are microscopic96
features. All remaining features beyond the second are functions of Z and N exclusively.97
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2.3 Hybrid data for training98

Our training is hybrid data consisting of two distinct input sets. The first is the mass data provided by the99
2020 Atomic Mass Evaluation (AME2020) [28]. The information in this set is very precise with an average100
reported mass uncertainty of roughly 25 keV. Modern experimental advances, such as Penning trap mass101
spectrometers enhanced with the Phase-Imaging Ion-Cyclotron-Resonance technique, enable such high102
precision measurements [29, 30].103

The second mass data are provided by modern theoretical models. The information in this set is less104
precise, owing to the approximations made in the modeling of atomic nuclei. This set can be calculated for105
nuclei that have not yet been measured, providing a valuable new source of information. Nuclear models in106
this second set include macroscopic-microscopic approaches like the Duflo-Zuker model [31], the 2012107
version of the Finite Range Droplet Model (FRDM) [32], the WS4 model [33] and microscopic approaches108
like UNEDF [34], and HFB32 [35].109

In this work, we combine predictions from three theoretical models: FRDM2012, WS4, and HFB32.110
Because these models do not report individual uncertainties on their predictions, we instead estimate111
theoretical model uncertainty using the commonly quoted root-mean-square error or112

σRMS =

√√√√ 1

N

N∑
j

(dj − tj)2 , (3)

where dj is the atomic mass from the AME and tj is the predicted atomic mass from the theoretical model.113
The sum runs over each j which defines a nucleus, (Z,N ). For FRDM2012, WS4, and HFB32, σRMS =114
0.606, 0.295 and 0.608 MeV respectively, using AME2020 masses. While the σRMS is a good measure of115
overall model accuracy for measured nuclei, uncertainties are certainly larger for shorter-lived systems.116
In this work, we do not seek to preferentiate one model over another. For this reason, we increase the117
assumed uncertainty of WS4 to a more reasonable 0.500 MeV when probing its predicted masses further118
from stability.119

Training for the hybrid input data is taken at random, rather than selected based on any given criteria. The120
number of unique nuclei from experimental data is a free parameter in our training. The best performance121
is found for models provided with approximately 20% of the AME, or 400 to 500 nuclei [23]. The number122
of unique nuclei from theory is also a free parameter. We find that as few as 50 additional unmeasured123
nuclei can influence training, and therefore use this minimal number. In the case of theory data, we sample124
the masses of 50 randomly chosen nuclei from each of the three mass models independently.125

The benefit of using hybrid data is that the neural network is not limited to solutions of model averaging126
which can regress to the mean when extrapolating. Instead, the combination of hybrid data with ML-based127
methods affords the opportunity to create new models that are capable of reproducing data, capturing128
trends, and predicting yet to be measured masses with sound uncertainties.129

2.4 Model training and hyperparameters130

The network is set up with 6 hidden layers and 10 hidden nodes per layer. The final layer turns the131
network into a Gaussian ad-mixture. For masses we choose a single Gaussian, although other physical132
quantities, such as fission yields, may require additional components [36]. The Adam optimizer is used133
with learning rate 0.0002 [37]. We also implement a weight-decay regularization with value 0.01. These134
hyperparameters were determined from a select set of runs where the values were varied.135
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We perform model training with two loss functions. The first loss function, L1, captures the match to136
input data. The log-likelihood loss for data is written as,137

L1 = − ln

[
K∑
i=1

πi(x)
(2π)K/2σi(x)

exp

{
−||y − µi(x)||2

2σi(x)2

}]
, (4)

where y is the vector of training outputs and K is the total number of Gaussian mixtures. The πi(x), µi(x),138
and σi(x), variables define the Gaussians, as in Eqn. 1. The minimization of this loss function furnishes the139
posterior distributions of predicted masses.140

The hybrid mixture of experimental data and theoretical data enter into training as the variable y. Each141
nucleus defined uniquely by a proton number Z and neutron number N . A Gaussian distribution is assumed142
to represent the probability distribution for sampling both experimental and theoretical data,143

f(y, µ, σ) =
1

σ
√
2π

exp

(
−1

2

(
y − µ

σ

)2)
. (5)

For the high-precision experimental data taken from the AME, the mean is set to the evaluated mass,144
µ = MAME

Z,N , and the variance is set to the reported uncertainty of a nucleus’ mass, σ = δMAME
Z,N . For the145

theoretical data from the three mass models, the mean value is taken as the prediction of the given mass146
model respectively. The uncertainties in these models is not reported on a per nucleus basis. Therefore an147
approximation to the model’s σRMS, which is computed with respect to the AME, is used as the variance in148
the probability distribution.149

In this work, we do not include masses of isomeric states in the training set. However, we note that since150
our previous works [20, 23], the AME2020 is now utilized, rather than the earlier AME2016. This data151
better refines the separation of ground state and isomeric states in evaluated masses, which continues to be152
a known source of systematic uncertainty in the evaluation of atomic masses.153

For the AME data, we take roughly 500 nuclei for training, leaving the remaining 80% of the AME as154
testing data. The number of stochastic realizations per nucleus is 50. For theory data, we take only 50155
additional nuclei explicitly outside the AME. These nuclei are also taken at random. A given nucleus is set156
to have 20 stochastic realizations per theory model, for a total of 60 samples overall. From a set of testing157
runs, the above choices produce suitable models. We summarize the model hyperparameters in Table 1. A158
more complete study of all model hyperparameters is the subject of future investigations.159

One essential observation of ground-state masses is that they obey the eponymous Garvey-Kelson (GK)160
relations [38]. This result suggests a judicious choice of mass differences of neighboring nuclei that161
minimizes the interactions between nucleons to first order, resulting in particular linear combinations that162
strategically sum to zero.163

If N ≥ Z, the GK relations state that the mass difference is164

MZ−2,N+2 −MZ,N +MZ−1,N

−MZ−2,N+1 +MZ,N+1 −MZ−1,N+2 ≈ 0 ,
(6)
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Table 1. The neural network hyperparameters used in this work.
Parameter Value(s) Comment
λlayers 6 Defines the number of hidden layers.
λnodes 10 Defines the number of hidden nodes per hidden layer.
λgauss 1 Defines the number of Gaussians used in the MDN.
λlr 0.0002 Defines the learning rate of the Adam optimizer.
λwd 0.01 Defines the weight-decay regularization.
λexp 506 Defines the number of AME2020 data used in training.
λexp-pulls 50 Defines the number of samples per AME mass.
λtheory 50 Defines the unique nuclei probed using the three models.
λtheory-pulls 20 Defines the number of samples per theory mass.
λphysics 1.0 Defines the strength of the physics loss enforcement.
λZ-low 5 Defines the minimal proton number for the network.
λN-shells 8, 20, 28, 50, 82, 126, 184 Defines the major closed neutron shells.
λZ-shells 8, 20, 28, 50, 82, 114 Defines the major closed proton shells.
λFRDM2012 0.6 MeV Defines the uncertainty used in probing FRDM2012 masses.
λWS4 0.5 MeV Defines the uncertainty used in probing WS4 masses.
λHFB32 0.6 MeV Defines the uncertainty used in probing HFB32 masses.

and for N < Z,165
MZ+2,N−2 −MZ,N +MZ,N−1

−MZ+1,N−2 +MZ+1,N −MZ+2,N−1 ≈ 0 .
(7)

Higher order GK mass relations may also be considered, as in Ref. Barea et al. [39]. However, the use166
of these constraints alone does not yield viable predictions far from stability due to the accumulation of167
uncertainty as the relationship is recursively applied beyond known data [40].168

As an alternative, we perform no such iteration in our application of the GK relations. Equations 6 and 7169
are used directly, and it is important to recognize that these equations depend exclusively on the masses.170
Thus the second (physics-based) loss function can be defined purely as a function of the ML model’s mass171
predictions.172

To enforce this physics-based observation, the second loss function can be defined as173

L2 = − ln

∣∣∣∣∣∣
∑
{C}

GK(µ)

∣∣∣∣∣∣
 , (8)

where GK is function that defines the left-hand side of Equations 6 and 7 and we only use the model’s174
predicted mean value of the masses, µ. The sum is performed over any choice of subset, {C}, of masses175
and does not have to overlap with the hybrid training data. The absolute value is necessary to ensure that176
the log-loss remains a real number. As with the data loss, L1, we also seek to simultaneously minimize the177
physics-loss, L2, which amounts to reducing the error among the difference in masses defined in the above178
equations.179

An alternative to Equation 8 that is potentially more restrictive, is to take the absolute value inside the180
summation181

Lalt
2 = − ln

∑
{C}

|GK(µ)|

 . (9)
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Because Equation 9 sums many non-zero items, it is a larger loss than using Equation 8. In this case, the182
strength of the physics hyperparameter (discussed below) should generally be lower than in the case of183
using Equation 8. A strong preference for selecting one functional form for the physics-based loss over the184
other has not been found.185

The total loss function used in training is taken as a sum of the data and physics losses186

Ltotal = L1 + λphysicsL2 (10)

where λphysics is a model hyperparameter which defines the strength of enforcement of the physics loss. We187
have found that values between 0.1 and 2 generally enforce the physics constraint in model predictions.188

2.5 Assembling a model189

Hybrid data

Evaluated data
(high precision & weighting)

Theoretical data
(low precision & weighting)

Mixture Density 
Network

Predictions
(with robust uncertainties)

Figure 1. A schematic of our methodology. The procedure used in this work combines high precision
evaluated data with a handful of less-precise theoretical data. This results in predictions with well-quantified
uncertainties across the chart of nuclides.

A schematic of our methodology is shown in Figure 1 and encapsulated below. The modeling of masses190
begins by setting hyperparameters, summarized in Table 1, for the particular calculation. A random191
selection of hybrid data is made, as can be seen in Figure 2. The bulk of the masses selected for training192
comes from the AME (black squares) where high-precision evaluated data resides (gray squares). Only a193
handful of masses from theoretical models are taken for training (red squares).194

After selection of hyperparameters and data, training begins which seeks to minimize the total loss,195
Eqn. 10. Training can take many epochs, and the data loss as well as the physics loss play important roles196
throughout this process, as discussed in Mumpower et al. [23]. Once the MDN has been trained on data,197
the results are assembled into predictions by sampling the posterior distribution several thousand times.198
The final output is a prediction of the mean value of the expected mass, M , and its associated uncertainty,199
σ(M) for any provided nucleus defined by (Z, N ).200

3 RESULTS

In this section we present a MDN model trained on hybrid data. We analyze the performance with known201
data and discern the ability to extrapolate model predictions. We evaluate the impact of including theoretical202
data and the physics-based loss function.203
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Figure 2. The chart of nuclides showing the extent of the 2020 Atomic Mass Evaluation (AME) indicated
by grey squares, training nuclei part of the AME indicated by black squares, and the extra theoretical nuclei
indicated by red squares. Closed proton and neutron shells are indicated by parallel lines.

3.1 Comparison with existing data204

The final match to 506 training nuclei for our MDN model is σRMS = 0.279 MeV. The total σRMS for the205
entire AME2020 is 0.395 MeV. This is an increase of roughly 0.116 MeV between training and verification206
data which is on the order of the accuracy of the GK relations. We limit these calculations to nuclei with207
A ≥ 50. While the model can predict masses for nuclei lighter than A = 50, it generally performs worse in208
this region because there are fewer nuclei at lower mass numbers than in heavier mass regions. Therefore,209
there are fewer light nuclei selected in the random sample than heavy nuclei.210

The absolute value of the mass residual, ∆MZ,N = |MAME
Z,N −MMDN

Z,N |, is one way to measure model211
performance. Figure 3 plots this quantity across the chart of nuclides versus the AME2020. The predictions212
of light nuclei tend to have an error on the order of several MeV with heavier nuclei around 0.3 MeV. The213
MDN model performance is on par with commonly used models in the literature.214

In comparison to our previous results discussed in Mumpower et al. [23], the addition of light nuclei215
in training is found to relatively increase the discrepancy for heavier nuclei. The additional information216
modestly reduces the overall model quality as measured by σRMS. On the other hand, the model is better217
positioned to describe the nuclear landscape more completely, insofar as the training process introduces218
information on the nuclear interaction that is uniquely captured in low-mass systems.219

The behavior of the model with respect to select isotopic chains are shown in Figure 4. In regions of220
the chart where the MDN model is confident in its predictions such as in the Z = 79 isotopic chain, the221
uncertainties are very well constrained. The converse is also true, as is the case with higher uncertainties222
along the Z = 43 isotopic chain. The tin (Z = 50) isotopic chain highlights an intermediate case.223

Inspection of this figure shows that the model has a preference for evaluated data in this region and does224
not follow the trends of HFB32, despite HFB32 masses being provided for training. This result reveals225
a unique feature of our modeling: evaluated data, due to its low uncertainties, is highly favored while226
theoretical points, with relatively larger uncertainties, are used as guideposts for how nuclei behave where227
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Figure 3. The absolute value of mass residuals across the chart of nuclides using an MDN model and the
AME2020. Heavier nuclei are generally well described by the model while lighter nuclei exhibit larger
discrepancies. See text for details.

there is no data. How much a particularly model is favored farther from stability depends on how much228
weighting we provide it with the choice of model uncertainty. The trends of the MDN predictions are229
discussed in the next section.230

40 45 50 55 60
-2

-1

0

1

2

M
i

M
H
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Neutron number, N
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Z=50
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Z=79

Figure 4. The prediction of masses along three isotopic chains in comparison to AME2020 data. Masses
are plotted in reference to HFB32. The MDN model captures the trends exhibited in data and furnishes
individual uncertainties (the one, two, and, three sigma confidence intervals are shown by blue shading).

3.2 Trends away from measured data231

The extrapolation quality of atomic mass predictions is an important problem, especially for astrophysical232
applications where this information is needed for thousands of unmeasured species [41, 42]. The formation233
of the elements in particular requires robust predictions with well-quantified uncertainties [43]. The MDN234
supplies such information, and we now gauge the quality of the extrapolations by comparison with other235
theoretical models.236
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Figure 5. The total available energy for nuclear β− decay, Qβ , along the tin isotopic chain (Z = 50) with
a 1-σ confidence interval. The MDN model (blue) reproduces known data (black) and continues reasonably
physical behavior when extrapolating. Theoretical models used in training are plotted for comparison.

The Qβ(Z,N) = MZ,N − MZ+1,N−1 is plotted in Figure 5 for the tin (Z = 50) isotopic chain.237
Additionally plotted is the uncertainty, δQβ , which is calculated via propagation of error238

δQβ(Z,N) =
√

σ2(MZ,N ) + σ2(MZ+1,N−1)− 2σ(MZ,N ,MZ+1,N−1) . (11)

The mass uncertainties σ(MZ,N ), σ(MZ+1,N−1) are outputs of the MDN. The correlation between the239
masses, σ(MZ,N ,MZ+1,N−1), is assumed to be zero. The model has excellent performance where data is240
known and this result can be considered representative for other isotopic chains. Predicted uncertainties241
grow with decreasing and increasing neutron number outside of measured data, underscoring the Bayesian242
nature of our approach.243

Also shown in Figure 5 are the theoretical models used in training. Comparison with these models shows244
that the MDN continues to retain physical behavior when extrapolating to neutron deficient or neutron245
rich regions. Intriguingly, the MDN model does not preferentiate one specific model when extrapolating.246
Instead, where there begins to be discrepancies among the theoretical models, the uncertainties begin247
to increase. For Qβ , the predictions along the tin isotopic chain begin to be dominated by uncertainties248
roughly ten units from the last available AME2020 data point.249

In Figure 6 we show the extrapolation quality of one-neutron separation energies, S1n(Z,N) = Mn +250
MZ,N−1 −MZ,N . The propagation of error formula, Eqn. 11, is again employed to calculate δS1n since251
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Figure 6. The one-neutron separation energy, S1n, along the promethium isotopic chain (Z = 61) with a
1-σ confidence interval. The MDN model (blue) reproduces known data (black) and continues reasonably
physical behavior when extrapolating. Theoretical models used in training are plotted for comparison.

this quantity also depends on mass differences. The uncertainty of the mass of the neutron, Mn, can be252
safely ignored. The qualitative behavior of S1n is well described. No unphysical inversions of S1n are253
found with the MDN model in contrast to the HFB32 model where this behavior can arise; observe around254
N = 105. Again, we find that roughly ten units from the last measured isotope, uncertainties begin to rise255
substantially.256

A consequence of the growth of uncertainties is that the prediction of the neutron dripline, S1n = 0 is also257
largely uncertain for any isotopic chain. We conclude that hybrid data does not presently place stringent258
constraints on this quantity, which is widely recognized as an open problem by the community [44, 45, 46].259

Another quantity that can be used to gauge the quality of extrapolations is the two-neutron separation260
energy, S2n(Z,N) = 2Mn + MZ,N−2 − MZ,N . The two-neutron separation exhibits less odd-even261
staggering than S1n because the subtraction always pairs even-N or odd-N nuclei. The behavior of the262
MDN model is shown in Figure 7 for the lutetium (Z = 71), tungsten (Z = 74), iridium (Z = 71), and263
mercury (Z = 80) isotopic chains. All experimental data falls within the 1-σ confidence intervals except264
for 206Hg. A relatively robust shell closure is predicted at N = 126, though there is some weakening at the265
smaller proton numbers.266

Finally, we consider the behavior of the physics of ground-state masses across the nuclear chart using267
the predictions of the MDN model. Whether or not the GK relations are preserved is yet another test of268
the extrapolation quality of the MDN. The calculation of the left hand side of Eqns. 6 and 7 is shown in269
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Figure 7. The two-neutron separation energy, S2n, along several isotopic chains plotted with a 1-σ
confidence interval. The MDN model (colors) reproduces known data (black) and continues reasonably
physical behavior when extrapolating.

Figure 8 across the chart of nuclides. Yellow shading indicates the GK relations are satisfied while orange270
and red shading indicate potential problem areas where the relations have broken down. Given the behavior271
seen in the previous figures, it is clear that towards the neutron dripline, the uncertainties have grown so272
large that the model is unsure of the preservation of the GK relations. To emphasize this point, we calculate273
the nuclei for which the mass uncertainty, δM , is larger than the one-neutron separation energy, S1n, and274
designate this as a region bound in black. We observe that this bounded region is precisely where the275
orange and red regions are located. Figure 8 suggests that a potential modification of the loss function that276
encodes the GK relations could be made to include uncertainties obtained from the MDN. This line of277
reasoning is the subject of future work.278

3.3 Impact of theoretical data and physics constraint279

We now assess the impact of the inclusion of theoretical data and the physics loss on the predictive280
capabilities of the MDN. Figure 9 shows four different training sets in the context of S1n values. The line281
labeled MDN is the network shown throughout this manuscript that includes both hybrid data and physical282
constraint. A1 is a MDN model trained only with experimental data, lacking information about theory or283
the physical loss defined by the GK relations; A2 is a MDN model trained with the physics loss but without284
theoretical data; and A3 is a MDN model trained with theory data but without any physics loss.285
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Figure 8. A test of how well the GK relations are maintained throughout the chart of nuclides. Lower
values indicate predictions inline with GK, which is found nearly everywhere, except for the most extreme
cases where the model is uncertain at the limits of bound nuclei. The black outlined nuclei have δM > S1n,
indicating where mass uncertainties are large.
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Figure 9. Comparison of MDN models with different assumptions for input data and training loss along
the dysprosium (Z = 66) isotopic chain. See text for details.
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Table 2. The parameters found using a least-square fit of Eqn. 12 to the MDN uncertainties across the
chart of nuclides.

p0 p1 p2 p3 p4 p5
−7.035× 10−1 −1.037× 10−1 −2.997× 10−3 −3.729× 10−4 8.782× 10−7 1.109× 100

From these four sets, it is clear that both hybrid data and the physics-based loss are necessary to provide286
quality extrapolations into unknown regions. Training with the lack of theory and GK (A1) exhibits a287
less desirable preference for a smooth extrapolation of S1n values. The addition of the physics loss (A2)288
improves the situation by restoring the odd-even behavior observed in measured nuclei. The expected289
behavior in S1n is also restored by run A3, where the hybrid data includes theory but training is not290
informed of the GK relations.291

We note that the improvement in extrapolation behavior resulting from the hybrid data and physics-based292
loss is generally independent of any hyperparameters that otherwise appear in the MDN. In particular, we293
have preliminarily verified this result against systematic variations in relevant hyperparameters, including294
network size, training size, different nuclei, different input features and different blends of theoretical295
models. All of these variations demonstrate a similar propensity for improvement when both physics loss296
and hybrid data are used. These results lead us to reaffirm our previous observation that the addition of297
theory data serves as guideposts for the network solutions while the GK relations are used to ensure a298
refined solution.299

3.4 Estimated growth of uncertainties with neutron number300

The behavior of mass uncertainties as one traverses the chart of nuclides can be ascertained using the301
MDN predictions. Here we consider the evolution of uncertainties provided by an MDN model as a function302
of neutron excess, δN . We take the definition of δN to mean the number of neutrons from the last stable303
isotope and use the NuBase (2020) data to make this determination [47]. For each isotopic chain, δN may304
reference a slightly different neutron number for the particular isotope. The choice of this variable provides305
a relatively straight forward way to observe how mass uncertainties grow far from known data. The average306
and standard deviation of the MDN model’s uncertainties are shown in Fig. 10.307

The functional form of the average uncertainty growth as a function of neutron excess is well approximated308
by the following relation,309

σ(δN) ≈ p0 + p1δN + p2δN
2 + p3δN

3 + p4δN
4 + pδN5 , (12)

where the parameters, pi, are fit numerically (least squares) and are given in Table 2. This functional form310
may be readily used in simulations of nucleosynthesis to approximate uncertainties in masses with models311
that do not provide this information.312

4 CONCLUSION

We present a Bayesian averaging technique that can be used to study the ground-state masses of atomic313
nuclei with corresponding uncertainties. In this work, we combine high-precision evaluated data, weighted314
strongly, with theoretical data for nuclei which are further from stability, more poorly understood, and315
therefore weighted more weakly. Training of a probabilistic neural network is used to construct the316
posterior distribution of ground-state masses. Along with a loss function for matching data, a second,317
physics-based loss function is employed in training to emphasize the relevant local behavior of masses.318

Frontiers 14



Mumpower et al. Bayesian averaged Machine Learning for masses

0 10 20
Neutron excess, N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Un

ce
rta

in
ty

 (M
eV

)

Figure 10. The average and standard deviation of the growth of mass uncertainties as a function of neutron
excess. The functional form of the average can be well modeled by Eqn. 12 as plotted with a dashed black
line.

Excellent performance is obtained with comparison to known data, on the order of σRMS ∼ 0.3 MeV, and319
the physical behavior of solutions is maintained when extrapolating. It is found that available data from320
experiment and theory are not, at this time, sufficient to resolve the relatively large uncertainties towards321
the limits of bound nuclei using the framework developed in this work. We emphasize the continuing need322
for advances in nuclear experiment and theory to reduce these uncertainties.323

Our Bayesian averaging procedure enables the rapid construction of a mass model using any combination324
of precise and imprecise data through adjustable stochastic weights of the hybrid training inputs. For325
instance, if a particular theoretical model is favored over another, its sampling can be adjusted accordingly326
to emphasize its importance. Similarly, new high-precision data may be incorporated in the future from327
measurement campaigns at radioactive beam facilities. At the same time, our technique also enables328
freedom in the exploration of the relevant physics of ground-state masses. This can be achieved by probing329
a variety of physics-based features, for example, or by introducing alternative physics-based loss functions330
in training.331

The methodology outlined here can be generalized to describe any nuclear physics property of interest,332
particularly when reliable extrapolations are necessary. This technique opens new avenues into Machine333
Learning research in the context of nuclear physics through the unification of data, theory, and associated334
physical constraints to empower predictions with quantified uncertainties. We look forward to extensions335
of this work to model nuclear decay properties, such as half-lives and branching ratios, as particularly336
promising opportunities in the near future.337
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