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A necessary component of understanding vector-borne disease risk is accurate charac-
terization of the distributions of their vectors. Species distribution models have been 
successfully applied to data-rich species but may produce inaccurate results for sparsely 
documented vectors. In light of global change, vectors that are currently not well-
documented could become increasingly important, requiring tools to predict their 
distributions. One way to achieve this could be to leverage data on related species to 
inform the distribution of a sparsely documented vector based on the assumption that 
the environmental niches of related species are not independent. Relatedly, there is a 
natural dependence of the spatial distribution of a disease on the spatial dependence 
of its vector. Here, we propose to exploit these correlations by fitting a hierarchical 
model jointly to data on multiple vector species and their associated human diseases 
to improve distribution models of sparsely documented species. To demonstrate this 
approach, we evaluated the ability of twelve models – which differed in their pooling 
of data from multiple vector species and inclusion of disease data – to improve dis-
tribution estimates of sparsely documented vectors. We assessed our models on two 
simulated datasets, which allowed us to generalize our results and examine their mech-
anisms. We found that when the focal species is sparsely documented, incorporating 
data on related vector species reduces uncertainty and improves accuracy by reducing 
overfitting. When data on vector species are already incorporated, disease data only 
marginally improve model performance. However, when data on other vectors are 
not available, disease data can improve model accuracy and reduce overfitting and 
uncertainty. We then assessed the approach on empirical data on ticks and tick-borne 
diseases in Florida and found that incorporating data on other vector species improved 
model performance. This study illustrates the value in exploiting correlated data via 
joint modeling to improve distribution models of data-limited species.
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Introduction

A key component of understanding the risk of vector-borne 
disease is accurate characterization of the spatial distribution 
of its vector(s). Species distribution models (SDMs), which 
estimate a species’ distribution from presence–absence or 
presence-only data are well-established in biogeography and 
have been successfully applied to study the distribution of 
well-documented vector species (Barker and MacIsaac 2022, 
Kopsco  et  al. 2022). Practical and logistical circumstances 
influence the degree to which a given vector is documented. 
Practically, increased effort is likely to be focused on vectors 
known to transmit pathogens to humans, and we would 
expect to have larger historical data sets for species that have 
been longer established within a region. Similarly, some vec-
tors inhabit landscapes that are more common, easier to 
sample, or promote human contact, thereby increasing the 
probability that these species are detected.

As global change continues, vectors that are currently not 
well-documented could become increasingly relevant. For 
example, as habitat ranges are altered, we may witness increased 
contact and spillover between species (Wright  et  al. 2015, 
Cumbie  et  al. 2022), allowing current non-vector species to 
transmit pathogens. Additionally, changing climates may allow 
for establishment of vector species in areas where they are 
currently rare or absent (Caminade et al. 2018, Ogden et al. 
2020). Further, landscape alteration, caused by human modi-
fication or climate change, could result in increased human 
contact with currently sporadic or removed vector habitats. 
Therefore, it is essential that we understand the distributions of 
vectors for which we have limited presence data. 

Numerous approaches exist, such as generalized linear 
models, generalized additive models, boosted regression 
trees, and MaxEnt models, to estimate species distributions 
(Peterson et al. 2011). These techniques leverage associations 
between environmental factors and locations where a species 
has been documented, necessarily assuming that the train-
ing sample represents the environmental conditions within 
the species’ range (Richmond et al. 2010). Therefore, while 
SDMs produce accurate estimates when developed with 
large, unbiased training data sets, accuracy declines both as 
training size decreases (Williams  et  al. 2009, Aguilar  et  al. 
2016, Boyd et al. 2023) and sample bias increases (Bean et al. 
2012), making them less reliable when applied to sparsely 
documented species.

Joint species distribution models (JSDMs) extend single 
SDMs by relaxing the assumption of independence between 
species within an ecological community. JSDMs account for 
residual co-occurrence patterns between species not explained 
by model covariates (Pollock et al. 2014). Hierarchical mod-
els, such as species archetype models (Hui et al. 2013) and 
hierarchical models of species communities (Ovaskainen 
and Soininen 2011), further exploit multispecies informa-
tion by clustering species based on environmental responses 
(Hui  et  al. 2013), or modeling environmental responses 
as a function of shared species’ traits (Zakharova  et  al. 
2019) or genetic units (Ovaskainen and Soininen 2011, 
Ovaskainen  et  al. 2017, Escamilla Molgora  et  al. 2022). 

These techniques achieve better accuracy by borrowing 
strength from common species to inform the responses of 
less common species. The degree of improvement increases as 
available presence records decrease (Hui et al. 2013).

We propose fitting an extended, hierarchically pooled 
JSDM to data on multiple vector species within the same tax-
onomic family and data on the human diseases they transmit 
to improve distribution estimates for sparsely documented 
vector species. This approach is based on two assumptions. 
First, we assume that there is valuable information about the 
environmental niche of a species that is shared among spe-
cies at higher taxonomic levels. Genotypic information has 
been shown to improve distribution models for other species 
(Banta et al. 2012, Marcer et al. 2016, Zakharova et al. 2019) 
and a thorough argument for partial pooling within SDMs 
has been presented elsewhere (Smith  et  al. 2019). Second, 
we assume that due to the dependency of a pathogen on the 
vector that transmits it, there is valuable information about 
the spatial distribution of the vector contained in the spatial 
distributions of the diseases it transmits. Hence, through a 
hierarchical Bayesian framework, we can extend our JSDM 
to incorporate epidemiological data.

In this paper, we aim to discern whether these techniques 
improve distribution estimates for sparsely documented vec-
tors. We predicted that joint-hierarchical pooling of vector 
species and incorporating disease data will increase model 
accuracy for a sparsely documented focal species due to 
reduced overfitting compared to the species-independent 
model. We fitted our models to empirical data on six tick 
species, within four genera, from the family Ixodidae 
(Amblyomma americanum, A. maculatum, Dermacentor varia-
bilis, Ixodes affinis, Ixodes scapularis, Rhipicephalus sanguineus) 
and three human diseases (anaplasmosis, ehrlichiosis, Lyme 
disease) in Florida. We utilized two simulated data sets – 
one with all species well-documented and another with the 
focal species sparsely documented – to test the generalizabil-
ity of our results and our understanding of the mechanisms 
driving them. Ticks in Florida serve as a useful case study 
because multiple species (with differing levels of documenta-
tion) coexist. Further, multiple human diseases transmitted 
by these ticks co-circulate, and disease data are available at a 
reasonably fine spatial resolution.

Material and methods

Overview

We evaluated the ability of twelve alternative models to 
improve distribution estimates of sparsely documented vec-
tors (Fig. 1). The first six models differ in their assumptions 
regarding how information was pooled (Fig. 2) among spe-
cies. The second six models mirror the first six, but incorpo-
rate human disease data. To generalize results and examine 
their mechanisms, we analyzed the performance of our mod-
els fitted to ten simulations for two simulated data sets, one 
where all species are well-documented and another where the 
focal species I. scapularis is sparsely documented. We assessed 
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model performance based on each model’s ability to recover 
the distribution from which our focal vector was simulated. 
We then fitted our models to ten random training data sets 
derived from empirical presence–absence records of ticks and 
tick-borne diseases within Florida. We evaluated the average 
accuracy of model predictions on held-out testing data for a 
species that we sparsely sampled (A. maculatum).

Data

Vector data
Vector presence data were obtained from VectorMap (2020, 
http://www.vectormap.si.edu) and iNaturalist (https://www.

inaturalist.org). Only iNaturalist data considered ‘research 
grade’ were included, and we removed duplicates. To obtain 
absence data, we referenced VectorMap publications and 
assumed that if a species was not reported at a sampling 
location, but was included within the study, that the spe-
cies was absent at that location. To avoid conflating low 
sampling effort with low vector presence, we based pseudo-
absence locations on presence locations from chiggers, fleas, 
and mites from both databases and the Global Biodiversity 
Information Facility (www.gbif.org). We used a 1:1 ratio of 
presence to absence points, which produces the most accu-
rate predicted distribution for regression techniques (Barbet-
Massin et al. 2012).

Figure 2. Graphical depiction of how intercepts (left) and response to environmental covariates (right) were modeled for our six distinct 
vector species models. M1 is the species-independent model, M2 and M3 are the species pooled models, M4 is the genus-independent 
model, M5 is the genus-pooled model, and M6 is the family-independent model. Per species effects have the additional subscript [S], per 
genus effects have the additional subscript [G], and per family effects have the additional subscript [F].

Figure 1.Graphical depiction of the four steps involved in our full analysis. The top row depicts the data to which we fitted our twelve 
models, the middle row depicts the metrics used to assess model performance, and the bottom row depicts the comparisons used within 
that step of analysis. R2 is the coefficient of determination between predicted probability of presence and true probability of presence. OF 
is a metric of overfitting, and x represents the model number, a value from 1 to 6..
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We artificially sparsely sampled one species within our 
empirical data (A. maculatum) by including 20% of avail-
able presence–absence data in our training set and withhold-
ing the rest for testing. The artificial sparse-sampling allowed 
for a robust testing data set to evaluate model performances. 
To ensure spatial independence between our training and 
testing data, data were split using the ‘blockCV’ package 
(Valavi et al. 2019) in R ver. 2023.03.0+386 (www.r-project.
org). To test the limitations of incorporating disease data, we 
selected a vector species that does not transmit any of the dis-
eases within our model as our focal species. Empirical sample 
sizes are given in the Supporting information.

Human disease data
We obtained annual incidence data on three human diseases 
(anaplasmosis, ehrlichiosis, Lyme disease) from 2011 to 2019 
for each county from the Florida Department of Health 
(https://www.floridahealth.gov/diseases-and-conditions/tick-
and-insect-borne-diseases/tick-surveillance.html). We trans-
lated this into human disease presence data in a given county 
in a given year based on whether annual incidence there was 
greater than zero.

Covariate data
We modeled vector distributions as a function of environ-
mental covariates, which have been linked to tick presence: 
land cover (Randolph 2000), 30-year average maximum tem-
perature (Ogden et al. 2020), 30-year average precipitation 
(Ogden  et  al. 2020), regional Palmer hydrological drought 
index (Jones and Kitron 2000), normalized differential veg-
etation index (Randolph 2000), and distance to the nearest 
waterbody (Kahl and Alidousti 1997). We obtained land-
cover data from global land cover characteristics database 
(Loveland  et  al. 2000), 30-year average climate data from 
WorldClim (Fick and Hijmans 2017), Palmer hydrological 
drought index from NOAA (Bushra and Rohli 2017), and 
normalized difference vegetation index data from USGS 
Landsat (Vermote  et  al. 2016). Finally, we obtained water-
body data from the World Wildlife Foundation’s global lakes 
and wetlands database (Lehner and Döll 2004). Pathogen cir-
culation was based on Companion Animal Parasitic Council 
(https://capcvet.org/maps) data, which report the seropreva-
lence in canines receiving veterinary treatment. To avoid 
considering imported cases as indicative of endemicity, we 
considered a threshold of five annual cases to signal trans-
mission. Finally, to account for under-reporting (Madison-
Antenucci et al. 2020), we modeled reporting probability as 
a function of health insurance coverage and population size. 
Insurance data were obtained from County Health Rankings 
(www.countyhealthrankings.org), and population data were 
obtained from WorldPop (www.worldpop.org).

Simulated data
Our first simulation simulates data for three well-documented 
species: A. americanum, A. maculatum, and D. variabilis, and 
a single sparsely documented species: I. scapularis. ‘Well-
documented’ is defined as 500 samples and ‘sparsely docu-
mented’ is defined as 30 samples (Supporting information). 

Our second simulation simulates all four species as well-doc-
umented (Supporting information).

Models

Joint-hierarchical vector models
We modeled vector presence for species s at location ns ( ysn

T
s ) 

as a Bernoulli function with probability of success ρsn
T

s . The 
corresponding likelihood function for models fitted to vector 
data alone is:
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Here, Bv is a c × s matrix with c representing the number of 
fixed and random effects in our vector presence model and 
s representing the number of vector species. Our presence–
absence data for each species are denoted by ysn

T
s . The Ns × 

c matrix, XsVp, is composed of 1s (for random-effects) and 
covariate values (for fixed-effects) at locations of presence–
absence data for species s. The number of presence–absence 
points for species s is denoted by Ns.

We developed six alternative models of vector presence 
with different pooling structures. We pooled both model 
intercepts, allowing us to exploit similarities in species pres-
ence affected by variables not included in our model, and 
slopes, allowing us to exploit similarities in species responses 
to environmental covariates included in our model. Three 
models (M1–M3) estimate unique parameters for each spe-
cies and differ based on the assumed covariance between 
parameters. Two models (M4–M5) estimate unique param-
eters for each genus and differ based on the assumed covari-
ance between parameters. Finally, one model (M6) estimates 
a unique parameter for the one family modeled (Fig. 2).

Model 1 (M1) assumes independence of environmental 
responses for each species. Therefore, statistically, we model 
presence probability as a linear function of environmental 
covariates:

logit � � �sn
T

s n s cn

n

s sX� � � �� � � �
�
�0

1

11

,   (2)

with a unique coefficient βn[s] for each environmental covari-
ate n at location x and each species s.

Model 2 (M2) eschews the assumption of independence, 
instead assuming sufficient niche conservation that we can 
borrow information on environmental responses across 
species. Statistically, we estimate a different coefficient for 
each species s drawn from a shared distribution, such that: 
� � �n s n n�� ��

� �� Normal ,  for c ∈ (0,11), s ∈ (0,11).

Model 3 (M3) is a phylogenetically informed extension of 
M2, which explicitly incorporates phylogenetic information 
and assumes that the similarity in environmental responses 
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between species is inversely proportional to their genetic 
distance. Genetic distance is defined as the sum of branch 
lengths between taxa based on a reconstructed hard tick phy-
logeny (Charrier  et  al. 2019). Statistically, this is achieved 
through incorporating a phylogenetic covariance matrix 
(Knij) that informs the random error of each environmental 
response:

K Enij n n ij ij� �� � � � �� � �2 2 0 01exp .   (3)

�ij
i j
i j

�
�
�

�
�
�

0
1

if
if

.

Here E is the phylogenetic distance matrix, ηn
2  represents 

maximum covariance between two species, and ϕn represents 
rate of decline in similarity.

Model 4 (M4) assumes niche overlap of vectors within 
the same genus but that the responses among genera are not 
conserved. Statistically, this is achieved by modeling presence 
probability as a linear function of environmental covariates:

logit � � � �sn
T

g n g cn s

n
s sX� � � � �� � � � � �

�
�0

1

11

,   (4)

with a unique coefficient estimated for every environmen-
tal covariate for each genus, g. We included a random effect 
(� � ��s�� ��

� �� Normal ,  for s ∈ (1,6)) for each species to 
allow for species-specific deviations from the shared genus 
intercept.

The relationship between model 5 (M5) and M4 is analo-
gous to that between M2 and M1. Whereas M2 removes the 
assumption of independence among species, M5 removes the 
assumption of independence among genera. Statistically, we 
estimate a different coefficient for each genus drawn from a 
shared distribution: such that � � �n g n n�� ��

� �� Normal ,  for c 
∈ (0,11), g ∈ (1,4).

Finally, model 6 (M6) assumes all vectors within the same 
family share environmental responses. Statistically, this is 
achieved by modeling presence probability as a linear func-
tion of environmental covariates:

logit � � � �sn
T

f n f cn s

n

s sX� � � � �� � � � � �
�
�0

1

11

,   (5)

with a unique coefficient estimated for every environmental 
covariate for each family. Similar to M4, we included the ran-
dom effect α[s]. M1–M6 were fitted to vector data only.

Incorporating human disease data
Models 7 through 12 (M7–M12) contain identical vector 
models to M1–M6, respectively. However, M7–M12 are also 
fitted to human disease data, and require extended structure 
(Supporting information). Overall, we modeled the presence 

of human disease d in county i and year j (yijd) as a Bernoulli 
process with a probability of success equal to the product of 
the probability of human disease presence (ψid) and the prob-
ability of the human disease being reported (pijd), such that:

y pijd id ijd� Bern �� �.   (6)

Based on the assumption that the latent probability of dis-
ease within each county was constant over our modeled time-
frame, we estimated the probability of reporting each year 
for each county. Consistent with previous work showing an 
association between health insurance coverage and health-
care-seeking behavior (Ayanian 2000), we modeled the prob-
ability of reporting as a linear function of county population 
size (Ni) and the proportion of individuals in that county 
with health insurance in year j (Sij), resulting in:

logit p S Nijd R d R d ij R d i� � � � �� � � � � �� � �0 1 2 .   (7)

We modeled the probability that disease d is in county i as 
a function of the probability that the causative pathogen of 
disease d is in the county (Pid) and the probability that the 
vector(s) that transmits the pathogen is present in the county 
(Vnid), such that:

logit �

� � � �

id

D d D d id D d id D d idP V V

� �
� � � �� � � � � � � �0 1 2 1 3 2 .

  (8)

The probability that the causative pathogen of disease d is in 
county i was modeled as a linear function of the transformed 
distance to the closest county in which pathogen d has been 
reported. Here:

logit P Did P d P d id� � � � �� � � �� �0 1 .   (9)

The probability of presence was assumed to exponentially 
decrease as distance increases, according to:

D Did id
� � �� �exp .   (10)

The probability that vector s is in county i (Vsid) was calcu-
lated as the average probability of vector presence over all grid 
cells in county i. According to this structure, while disease 
presence is dependent on vector presence, vector presence is 
not dependent on disease presence.

The likelihood function for the full model fitted to disease 
and vector data is given in the Supporting information.

Model fitting
We used a Markov chain Monte Carlo algorithm imple-
mented in RStan (Stan Development Team 2023) to fit our 
models. For each model–data combination, we ran 4 chains 
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with 40 000 iterations and a burn-in period of 5000. We 
used normally distributed priors with hyperparameters 
selected based on prior predictive checks (Supporting infor-
mation) for all parameters in our linear models. For hyper-
parameters representing variance and covariance, we used 
exponential priors to ensure positivity. We inspected trace 
plots (Supporting information) and utilized the Gelman–
Rubin diagnostic to assess convergence with 1.1 as an accept-
able threshold. Estimated parameters were evaluated against 
those used to simulate data for validation (Supporting 
information).

Model analysis

Simulated data
To test the generalizability of our results, we evaluated the 
ability of our models to recover the distribution from which 
our focal species I. scapularis was simulated on ten simu-
lated data sets from our sparsely sampled simulation. Model 
performance was defined as the correlation between model-
predicted presence probability and true presence probability 
(from the simulated distribution) over the model’s overall 
spatial extent ( Ro

2 ). Model uncertainty was defined as the 
width of 95% Bayesian credibility interval.

We hypothesized that any improvement in performance 
achieved through joint-hierarchical pooling of vector spe-
cies or incorporating disease data would be from reducing 
overfitting compared to the species-independent model. To 
quantify overfitting, we created an overfitting metric (OF), 
defined as the percent change between RT

2  and Ro
2 , or:

OF � �R R
R

T O

T

2 2

2 .   (11)

We defined RT
2  as the coefficient of determination between 

model-predicted presence probability and the presence prob-
ability from which the focal species was simulated over the 
spatial extent of the training data. We predicted that when 
our focal species was sparsely documented, M1 (the species-
independent model) would be more overfitted than our 
pooled models, because it has the most parameter flexibility. 
Similarly, we predicted that models fitted to vector data alone 
would be more overfitted than the corresponding models fit-
ted to vector and human disease data together (i.e. OFM1 > 
OFM7). In contrast, we predicted that we would not see dif-
ferences in OF when we trained our models on sufficient data 
for our focal species. We fitted our models to ten simulated 
data sets to improve our power to detect small but consistent 
changes in model performance among alternative models.

Empirical data
We fitted our twelve models to ten training data sets derived 
from empirical data on six tick species and three tick-borne 
diseases in Florida. Then, we evaluated the average accu-
racy of model predictions compared to testing data for our 
sparsely documented, focal vector species A. maculatum. 

Accuracy is defined as the proportion of true positives (TP) 
and true negatives (TN) among all possible outcomes (i.e. TP 
and TN, false positives [FP] and false negatives [FN]), which 
is calculated as: 

Accuracy TP TN
TP TN FP FN

� �
� � �

.   (12)

We focus our assessment on accuracy because it is intui-
tive and incorporates presences and absences. To assess the 
robustness of our conclusions to metric choice, we also cal-
culated area under the curve, kappa statistic, and true skill 
statistic. We found that relative model performance was 
consistent across metrics (Supporting information). If hier-
archical pooling of data on vector species improved the esti-
mated distributions of our sparsely documented species, we 
would expect, on average, predictions from the pooled mod-
els to be more accurate than predictions from the species-
independent model. If incorporating disease data improved 
the estimated distributions of our sparsely documented spe-
cies, we would expect predictions from the models fitted to 
both vector and disease data to be more accurate than pre-
dictions from the corresponding models fitted to vector data 
alone.

Results

Analysis of simulated data

Joint-hierarchical model
To test the effect of pooling vector species when the focal 
species was sparsely documented, we compared model per-
formance of our pooled models (M2–M6) to model perfor-
mance of our independent model (M1) over 10 simulation 
runs. Within the simulation where our focal species was 
sparsely documented, on average, our pooled models out-
performed our species-independent model ( Ro

2  = 0.68 
versus Ro

2  = 0.41) and decreased model uncertainty 
(Uncertainty = 0.41 versus Uncertainty = 0.60). Importantly, 
within this simulation, M4 (the genus-independent model) 
is a species-independent model because our focal species I. 
scapularis is the only species within its genus in our simulated 
data. With a single species within the genus, pooling at the 
genus level is equivalent to pooling at the species level. This 
constraint was due to insufficient presence records to estimate 
the distribution of the second species within the genus, and is 
a limitation of our study. When we classify M4 as a species-
independent model, the improvement derived from hierar-
chal pooling of vector species increases ( RO

2  = 0.77 versus 
RO

2  = 0.38). The improved performance derived from pool-
ing vector data when the focal species is sparsely documented 
is consistent with our predictions. Table 1 and Fig. 3 sum-
marize the performances of M1–M6 fitted to simulated data. 
Differences between predicted distributions among models 
are depicted in Fig. 4. 
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To determine the specific reasons that some models per-
formed better than others, we quantified overfitting. On 
average, our species-independent model (OFi = 0.29) was 
more overfitted than our pooled models (OFp = 0.06). When 
we classified M4 as a species-independent model, the overfit-
ting increased in our independent models (OFi = 0.34) and 
decreased in our pooled models (OFp = −0.03). An overfit-
ting value of 0.34 indicates that our model predictions were 
34% more accurate within the spatial extent of the training 
data than over the full spatial extent of our model, while an 
overfitting value of −0.03 indicates our model predictions 
were 3% more accurate over the model’s full spatial extent, 

meaning the model was not overfitted to the training data. 
These results are consistent with our prediction that a reduc-
tion in overfitting from pooling data is driving differences in 
model performances (Table 1).

To isolate the effect of sample size, as a control, we fitted 
the same six models to a simulation where our focal species 
was well-documented. Within this simulation, there was no 
difference in performance ( ROi

2  = 0.87 versus ROp
2  = 0.88), 

and a small decrease in uncertainty ( ROi
2  = 0.22 versus 

ROp
2  = 0.19) between our species-independent model and 

our pooled models (Supporting information). Similarly, the 
difference in overfitting between the independent and pooled 
models was minor (Supporting information). This result is 
consistent with our hypothesis and reflects that models fitted 
to sufficient data can accurately estimate the distribution of 
the species, not just the distribution in the training data.

To determine if there was an optimal pooling structure, we 
compared performance across our six models. Within both of 
our simulations, M3 (the phylogenetically informed model) 
performed best. However, the improvement in M3 over other 
pooled models was marginal: RO

2 0 84= .  versus RO
2  = 0.82) 

(Table 1, Fig. 3, Supporting information).

Incorporating human disease data
To test the effect of incorporating human disease data, we 
compared the average RO

2  of each version of the model with 
and without human disease data (e.g. M1 versus M7) over 10 
simulation runs. Within the simulation where our focal spe-
cies was sparsely documented, incorporating human disease 
data increased RO

2  for the estimated focal-vector distribution 
by 0.06. To determine the utility of incorporating disease data 
when additional vector data are not available, we compared 
the difference in model performance derived from adding 
disease data in our pooled (M2, M3, and M6) and species-
independent (M1 and M4) models. In our pooled models, 
incorporating disease data generated an average improve-
ment of 0.02. In our species-independent models, incorpo-
rating disease data generated an average improvement of 0.14 

Table 1. Average RO2  (and range) between model-predicted distribution and true distribution, average overfitting (OF) (and range), and 
uncertainty for our focal species Ixodes scapularis over 10 runs of the sparsely sampled simulation. R2 values measure agreement between 
the ‘true’ distribution used within our simulation and the distribution predicted by our model, with higher R2 values indicating stronger 
agreement. OF values measure the percent change in R2 between the geographic areas represented in the training data and the full geo-
graphic range of our predictions. Higher OF values indicate that the model is overfitted, whereas OF values at or below zero indicate that 
the model is not overfitted to the training data.

Model Structure Data sources Simulation Avg R2 Avg OF Uncertainty

M1 species independent vector sparsely sampled 0.41 (0–0.68) 0.29 (−0.32 to 0.99) 0.60
M2 species pooled vector sparsely sampled 0.77 (0.53–0.92) −0.06 (−0.56 to 0.16) 0.46
M3 species pooed vector sparsely sampled 0.78 (0.54–0.95) 0.01 (−0.24 to 0.18) 0.42
M4 genus independent vector sparsely sampled 0.34 (0–0.57) 0.38 (−0.35 to 1.13) 0.60
M5 genus pooled vector sparsely sampled 0.76 (0.54–0.92) 0 (−0.31 to 0.18) 0.47
M6 family independent vector sparsely sampled 0.77 (0.55–0.95) −0.05 (−0.53 to 0.16) 0.23
M7 species independent vector, disease sparsely sampled 0.52 (0.05–0.88) 0.23 (0–0.82) 0.58
M8 species pooled vector, disease sparsely sampled 0.80 (0.48–0.94) −0.06 (−0.47 to 0.16) 0.45
M9 species pooed vector, disease sparsely sampled 0.80 (0.52–0.95) 0 (−0.23 to 0.17) 0.40
M10 genus independent vector, disease sparsely sampled 0.51 (0–0.91) 0.25 (0 to 1.09) 0.59
M11 genus pooled vector, disease sparsely sampled 0.77 (0.44–0.95) −0.03 (−0.48 to 0.17) 0.43
M12 family independent vector, disease sparsely sampled 0.80 (0.55–0.91) −0.04 (−0.54 to 0.16) 0.29

Figure 3. Distribution of RO
2  between predicted and true probabil-

ity distributions for our sparsely documented species, Ixodes scapu-
laris, for all 12 models over 10 simulation runs. Models with the 
black outline are fitted to vector data and human disease data. 
Models to the left of the dashed line with no outline are fitted to 
vector data alone.
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(Table 1, Fig. 3). This result demonstrates that incorporat-
ing disease data improves performance more when data on 
additional vector species are not available. Across all models, 
incorporating disease data marginally reduced uncertainty. 
Differences in predicted distributions among models are 
depicted in Fig. 4. 

To determine the specific reasons for this improvement, 
we calculated an overfitting metric for models fitted to both 
vector and human disease data. Within the species-inde-
pendent models, on average, overfitting was 0.24, demon-
strating that adding disease data reduced overfitting by 0.10 
(OF = 0.34 without disease data versus OF = 0.24 with dis-
ease data). Within our pooled models, overfitting was equiva-
lent with and without disease data (OF = 0.03). This result 
demonstrates that incorporating disease data leads to model 
improvement by reducing overfitting within our species-
independent models (Table 1).

As a control, we made the same model comparisons in 
a simulation where our focal species was well-documented. 
For our focal species, there was on average a 0.01 improve-
ment in model performance (e.g. RO

2  of M7 versus RO
2  of 

M1) in the well-sampled simulation when adding disease 
data and no change in model uncertainty. Average overfit-
ting over all models was 0.01. Similarly, when all species 
were well-documented, there was no change in overfitting 

between the models with and without disease data, demon-
strating that disease data can benefit distribution models for 
a sparsely documented species, but only marginally affects 
model predictions for well-documented species (Supporting 
information).

Analysis of empirical data

To determine the utility of pooling data to improve the pre-
dicted distribution of our sparsely documented species A. 
maculatum, we compared the accuracy of the species-inde-
pendent models to the average accuracy of the pooled models 
over ten test-train splits. The average accuracy of the pooled 
models (Accp = 0.59) was higher than the average accuracy of 
the species-independent model (Acci = 0.53), and the aver-
age uncertainty of the pooled models (Uncertaintyp = 0.28) 
was lower than the uncertainty of the independent models 
(Uncertaintyi = 0.65). This result is consistent with our simu-
lated results and predictions. To assess the impact of incorpo-
rating disease data to improve the predicted distribution of 
our sparsely documented species, we compared model accu-
racy with and without disease data across ten test-train splits. 
We found no effect of incorporating disease data on accuracy 
or uncertainty, likely due to A. maculatum not transmitting 
the diseases in the model (Table 2).

Figure 4. True vector distribution within our simulation (left) and predicted distributions (right) of Ixodes scapularis when sparsely docu-
mented for each of our twelve models from a randomly selected simulation run. Outputs in the first column are from species-independent 
models. Outputs in the second and third columns are from pooled models.
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Discussion

In this study, we evaluated the utility of exploiting ecological 
correlations between related vector species and the human 
diseases they transmit to improve spatial distribution models 
of sparsely documented vector species. Due to the assumed 
spatial correlation between the distributions of sparsely docu-
mented vector species, more well-sampled vector species, and 
vector-borne human disease, we predicted that models that 
jointly considered all of these data would reduce overfitting 
and improve performance. We found that incorporating data 
on additional vector species improved model performance 
for sparsely documented vectors. When the sparsely docu-
mented species did not transmit the diseases in the model, 
incorporating human disease data had no effect on model 
performance. When the sparsely documented vector did 
transmit the diseases in the model, incorporating disease 
data alone improved model performance by reducing overfit-
ting, particularly when data on other vector species were not 
incorporated.

When fitted to simulated data and empirical data, our 
pooled distribution models for a sparsely documented spe-
cies outperformed our species-independent models. The 
average overfitting (OF) value of our species-independent 
models confirms that, unlike our pooled models, the species-
independent models are overfitted and therefore less able to 
reliably make out-of-context predictions. Past studies have 
found niche overlap both within a tick genus (Estrada Peña 
2019) and across tick families (Peralbo-Moreno et al. 2022), 
and niche divergence across tick genera (Tkadlec  et  al. 
2018). While we expected that species within the same 
genus may have conserved niches, we did not expect to see 
as much similarity between species related only at the family 
level. This result could suggest trait conservation at the fam-
ily level for the specific species within our model. 

While our findings on the benefits of including data on 
additional vector species within a taxonomic family were con-
sistent across our empirical and simulated analyses, we found 
a larger effect of pooling within our simulations. A plausible 
explanation is that the estimated independent distribution of 
I. scapularis was more similar to the estimated independent 

distributions of the other vectors represented in our data than 
that of A. maculatum (Supporting information). This under-
scores an important limitation of our approach: the effective-
ness of pooling among vector species depends on similarity of 
their individual distributions.

In our simulations in which our sparsely documented spe-
cies I. scapularis was a vector of the diseases in the model, dis-
ease data marginally improved model performance. However, 
there was a substantial difference in improvement associated 
with disease data between our species-independent and pooled 
models. Specifically, our species-independent models saw a 
larger reduction in overfitting than our pooled models when 
fitted to disease data. This result suggests that when the sparsely 
documented species is a vector of the diseases in the model, and 
data on other related vector species are not available, disease 
data can improve model performance by decreasing overfit-
ting. Disease data are only marginally informative, however, if 
presence data on related vector species are already incorporated 
(see Supporting information for detail of how incorporating 
vector versus disease data differently constrains parameters). 
It is plausible that the limited utility of disease data, even 
when informing the distribution of the vector that transmits 
the disease in the model, arises because disease data are only 
indirectly related to vector data. For example, although dis-
ease presence is affected by vector presence, it also requires the 
presence of the causative pathogen, human interaction with 
the vector, and diagnosis of the disease. Additionally, since one 
disease (ehrlichiosis) is caused by both our focal vector I. scapu-
laris and a second vector, there may be only a weak correlation 
between disease and focal-vector presence. Disease data had 
little to no effect on model performance when the focal species 
was well-documented and the model was trained on adequate 
data, or when the focal, sparsely documented vector species 
did not transmit the diseases included in the model. This rein-
forces the view that incorporating disease data may be most 
beneficial for distribution models of sparsely documented spe-
cies that lack well-documented, related species to help inform 
their distribution, and transmit well-documented diseases. 
However, even when that focal species was well-sampled, or 
did not transmit the diseases in the model, disease data did not 
introduce additional bias or reduce model performance.

Table 2. Average accuracy (and range) and uncertainty for our focal species Amblyomma maculatum for all models over 10 test-train splits 
of empirical data. 

Model Structure Data sources Accuracy (range) Uncertainty

M1 species independent vector 0.53 (0.50–0.60) 0.65
M2 species pooled vector 0.58 (0.53–0.62) 0.51
M3 species pooed vector 0.59 (0.5–0.61) 0.28
M4 genus independent vector 0.58 (0.55–0.60) 0.20
M5 genus pooled vector 0.58 (0.55–0.60) 0.20
M6 family independent vector 0.60 (0.58–0.62) 0.20
M7 species independent vector, disease 0.53 (0.51–0.60) 0.65
M8 species pooled vector, disease 0.58 (0.54–0.62) 0.51
M9 species pooed vector, disease 0.59 (0.57–0.61) 0.28
M10 genus independent vector, disease 0.58 (0.55–0.60) 0.20
M11 genus pooled vector, disease 0.58 (0.55–0.60) 0.20
M12 family independent vector, disease 0.60 (0.58–0.62) 0.21
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Within our simulations, we only simulated a single spe-
cies within the Ixodes genus, causing our genus-independent 
model to reduce to a species-independent model, which was a 
limitation of our study. We did so to prevent simulating spe-
cies from biased distributions caused by insufficient presence 
records in our empirical training data. This was particularly 
important since we were specifically evaluating taxonomic 
correlation in each species’ environmental response, and any 
correlation could be diluted by simulating from a biased esti-
mated distribution.

Overall, we have shown the benefits of joint modeling of 
additional vector and human disease data towards improv-
ing distribution estimates for a sparsely documented vector 
species. Others have proposed hierarchical pooling on theo-
retical grounds (Smith et al. 2019). Our study adds value by 
evaluating when this technique is most useful (i.e. when a 
vector is sparsely documented) and comparing models pooled 
at different taxonomic levels. Similar to other works supple-
menting SDMs with data on other species (Fithian  et  al. 
2014, Valle and Tucker Lima 2014) or genetic information 
(Marcer et al. 2016, Godoy et al. 2018, Wang et al. 2019), 
our results highlight the potential of leveraging data from 
related species. To the best of our knowledge, this is the first 
study to utilize spatially correlated epidemiological data to 
inform an SDM of a disease vector. Incorporating data on 
other vector species within the family proved to be most use-
ful. Incorporating disease data improved model performance 
and reduced model uncertainty if the sparsely documented 
species transmitted the diseases in the model, particularly 
when data on other species were not available. Further, even 
when the sparsely documented species did not transmit the 
diseases in the model, incorporating disease data did not hurt 
model performance. Therefore, epidemiological data could 
provide an untapped, supplemental data source towards 
informing distribution models of data-limited vector or obli-
gate host/reservoir species.
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