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With increasingly available renewable sources of electricity,
plasma catalysis could be a key component in the decarbon-
ization of natural gas and greenhouse gas valorization.
Fundamental insight is needed in both the coupling of plasma
and catalytic chemistries, and in chemical limitations and op-
portunities of such coupled systems to enable larger scale
engineering and optimization. This perspective describes
some of the pressing needs and high-impact opportunities
present in the current research landscape of plasma catalysis
for light hydrocarbons.
Addresses
1 Department of Chemical and Biomolecular Engineering, University of
Notre Dame, Notre Dame, IN 46556, United States of America
2 Department of Aerospace and Mechanical Engineering, University of
Notre Dame, Notre Dame, IN 46556, United States of America
3 Department of Chemistry and Biochemistry, University of Notre
Dame, Notre Dame, IN 46556, United States of America

Corresponding authors: Schneider, William F. (wschneider@nd.edu);
Hicks, Jason C. (jhicks3@nd.edu)
a Contributed Equally.
Current Opinion in Green and Sustainable Chemistry 2025,
51:100987

This review comes from a themed issue on Plasma based green
chemistry (2025)

Edited by: Annemie Bogaerts and Yury Gorbanev

https://doi.org/10.1016/j.cogsc.2024.100987

2452-2236/© 2024 Elsevier B.V. All rights are reserved, including
those for text and data mining, AI training, and similar technologies.

Introduction
The use of natural gasdan abundant, energy-rich nat-
ural resourcedthroughout the world is predicted to
grow in the coming decades [1], due to the value of the
energy and the base-chemical products that can come
from natural gas. Given the large carbon footprint of
recovering and processing natural gas, namely the
release of large amounts of both CH4 and CO2, finding
decarbonized options for these processes has great po-
tential for greenhouse gas (GHG) reduction [2]. Plasma

catalysis, which is powered by electricity and at mild
conditions, has the potential to convert the intrinsically
nonreactive components of both natural gas and GHGs
directly into valuable base-chemicals, fuels, and
hydrogen [3, 4]. Other sources of light alkanesdsuch as
biogas or industrial waste streamsdcould also be
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processed using plasma catalysis, and this only serves to
strengthen the motivation of studying these processes
on a fundamental level. As shown in Figure 1, these
feedstocks are converted through a combination of
plasma-phase gaseous reactions (driven by electron-
impact reactions) and surface reactions. The plasma-
phase reactions can include molecular excitations,
dissociation into either radical or stable species, and
radical recombination. Figure 1 uses ethane as an
example and demonstrates an excited ethane dissoci-
ating into ethylene and hydrogen, which can react

further to acetylene in a continued dehydrogenation.
Alternatively, dissociation into methyl radicals can lead
to the less-economically favorable methane; of course,
the production of radicals leads to a highly active
chemical environment and does not necessarily result in
methane alone. When a catalyst is introduced, plasma-
produced species can move to and interact with a solid
interface, and, again using ethane as an example, this
catalytic surface could selectively adsorb key products to
prevent further reaction. Alternatively, a catalyst surface
could be engineered to promote specific chemistry to

increase selectivity to desired products, such as hydro-
genation of acetylene to ethylene. An important factor
that differentiates plasma catalysis from thermal
chemistry is the presence of excited species impacting
the surface, leading to events such as excitation-
enhanced surface dissociation, again as shown in
Figure 1.

Despite years of promising research, a nonthermal
plasma-based process for converting light hydrocarbons
has not yet been commercialized. As with many

emerging technologies, research has thus tended to
focus toward demonstrating the potential of plasma
catalysis, rather than pursuing fundamental insights. We
argue that the field is mature enough to justify more
rigorous foundational studies. This perspective high-
lights the need for deeper research to advance plasma
catalysis for chemical production from light hydrocar-
bons and suggests future directions with the greatest
potential impact.
Challenges and limitations
The field of plasma catalysis for light hydrocarbon con-
version, while full of opportunities for decarbonized
chemical processing, is limited by inherent challenges
including selectivity, efficiency, material limitations, and
issues in coupling the plasma and catalytic chemistries.
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Figure 1
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Overview of the potential use of plasma catalysis in light hydrocarbon conversion. Sources include natural gas and GHGs, which can be converted with
modular plasma catalysis technology at the source or with larger-scale reactors in a centralized refinery. Within the plasma phase, the chemistry is
promoted by electron-impact driven processes, including excitations and dissociation to both stable and radical species. On the surface, some pro-
cesses well-known to the thermal catalysis community– including selective adsorption, combination, and dissociation–occur, and in some cases these
reactions are enhanced by the highly-energetic species coming from the plasma phase. Many potential chemistries can be realized in plasma catalysis
leading to a variety of more valuable products.

2 Plasma based green chemistry (2025)
Although these challenges are intrinsic, increasing

fundamental understanding of reaction mechanisms,
energy flow, and material stability will provide tools to
engineer solutions. Some of the known challenges and
limitations, as presented in the literature, are described
below, in the hopes of defining problems for the field to
address.

Kinetic and selectivity challenges
Plasma chemistry for hydrocarbon reforming is driven by
high-energy electrons and is therefore so rapid that
addressing kinetic limitations is not restricted to
improving the rate of reaction [5]. The main kinetic
challenges for useful plasma-driven catalysis lie in effi-

cient coupling to catalysts for selectivity while main-
taining high conversion. Unique to plasma catalysis are
the radicals and excited species, produced by the highly
active plasma phase, that impact a catalyst surface. For
the lightest molecules (CO2, H2, and CH4, etc.),
vibrational excitations from electron-collision promote
dissociation into radical species [6]. For heavier hydro-
carbons, more energetic electronic excitations are
required [7]. The relatively high density of radicals
leads to a balance of competing surface chemistries;
radicals adsorb more readily than closed shell species

and lead to saturated surfaces and Langmuire
Hinshelwood reactions [8]. Eley-Rideal type reactions
also become increasingly important with radicals due to
the high-activity of radical species in the gas phase [9].
Understanding how the kinetics of these processes
compete will lead to better insight into opportunities
and challenges in coupling of the plasma and catalytic
chemistry. Evidence in the literature suggests that cat-
alysts have the potential to promote selective
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conversion of light hydrocarbons in plasma [9,10].

However, while high conversion is possible in plasma
chemistry, there is a selectivity trade off because the
products desorbing from a catalyst re-enter the highly
active plasma phase and are likely to react, possibly back
to reactants. One solution is finding plasma conditions
that limit degradation of catalyst-produced species.
Other solutions include pulsed power sources, pulsed
delivery of feedstocks, postplasma catalysis, and alter-
native reactor configurations/designs that inhibit these
unwanted effects.

Thermodynamic challenges
Because nonthermal plasmas are intrinsically nonequi-

librium, they can drive energy-consuming (endergonic)
reactions even at low temperatures [11]. This property
makes them particularly appealing for reducing the
energy use in chemical processes, but it also creates
challenges in properly designing and controlling these
processes. Equilibrium thermodynamics are not appli-
cable to plasma-driven chemistry [12]. For example,
plasma catalytic methane dry reforming (DRM) is
observed to proceed at conditions at which bulk ther-
modynamics predict conversion to be zero [13]. How-
ever, most research on DRM focuses on kinetics rather

than the fundamental behavior relative to bulk ther-
modynamics [14]. Theoretical frameworks to predict
the steady state of any chemical system under the in-
fluence of a nonequilibrium plasma exist but remain to
be fully validated [12,15]. Such tools offer the promise
of predicting theoretical performance limits in analogy
to those provided by conventional thermodynamics, and
will be invaluable as inputs to higher level models for
system selection and optimization.
www.sciencedirect.com
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Figure 2

Number of articles published since August 2022 with keywords “plasma”
and “CO2/methane/ethane/propane/butane/pentane” in the title. Web of
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Durability/regeneration challenges
Coking remains as prevalent an issue in plasma catalysis
as it is in thermal catalysis. Even at ambient tempera-
tures, the hydrocarbon radicals formed in the plasma
phase tend to adsorb to available surfaces and grow an
amorphous, hydrogen-rich carbon (a-C:H) film through
radical additions to dangling bonds [16]. This a-C:H
film blocks catalyst pores and will readily form on the
walls and electrodes of the reactor, negatively altering
the characteristics of the plasma itself. Mitigation of this
form of coke is not trivial, but promising results have

recently been achieved by altering the reactor’s mate-
rials of construction [16,17], by adding an oxidant to the
feed [18e20], and by choosing plasma conditions that
facilitate the desorption of coke precursors [21]. There
are also encouraging results regenerating coked catalysts
with oxidative plasma, which requires lower tempera-
tures and pressures compared to thermal regeneration
[22]. However, this area tends to focus on the effect of
oxygen plasma on coke and overlooks its effect on the
catalyst itself. Similarly, knowledge of the precise
physical and chemical effects of hydrocarbon plasmas on

catalytic materials is missing from the current literature.
Thus, it is largely unknown how, or even if, hydrocarbon
plasma deactivates catalysts through the traditional
routes of sintering and leaching. More fundamental
studies focusing on the stability of catalysts in hydro-
carbon plasma, possibly utilizing in situ/operando
methods, are needed to meet this challenge.

Efficiency challenges
Energy efficiency is considered perhaps the largest
barrier preventing the realization of a plasma-based
commercial process to convert hydrocarbons. A recent
study on plasma nonoxidative ethane dehydrogenation

reported the highest achieved energy yield of 90 mmol
ethylene per kWh (or 0.025 mmol ethylene per kJ),
which corresponds to 0.34 % reaction efficiency, two
orders of magnitude below the typical efficiency of a
commercial ethane steam cracker (1.5e1.9 mmol
ethylene per kJ) [10,23]. Although nanosecond pulsed
sources can enhance efficiency [24], progress in this area
is hindered by inconsistent data reporting, a lack of
standards for determining energy efficiency, and little
historical knowledge about how scale-up will affect
energy consumption and recovery. However, we assert

that plasma-based processes do not yet (and may never
need to) compete in the same market as established
large-scale commercial processes such as steam
cracking, and thus direct efficiency comparisons do not
necessarily report on the potential for a plasma process.
Rather, plasma-based processes are best suited to
nonefficiency centric applications, such as when an
abundance of electrical energy is available (e.g., aboard
nuclear-powered vessels or during nonpeak electricity
demand hours) or when small-footprint, point-of-use
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reactors are required (e.g., to upcycle the side-products
of an ethane cracker). Thus, while understanding and
improving energy efficiency represents an impactful
opportunity for fundamental study in plasma-catalysis, it
is not paramount to the commercial success of the field.
Techno-economic analyses for specific applications are
ultimately necessary to determine the economic and
commercial potential of any specific plasma-catalytic

light alkane process, and life cycle assessments are
needed to fully understand the environmental benefits
and costs of plasma processes relative to other alterna-
tives, especially those (e.g., electrochemical; photo-
chemical) that similarly can be driven by renewable
electricity.
Future opportunities and advances needed
to meet challenges
The large majority of light alkane plasma work has
focused on methane (Figure 2), which reflects its rela-
tive abundance in shale gas. However, methane plasmas
contain a significant fraction of C2eC3 hydrocarbons
that are rarely studied independently in the plasma
catalysis literature despite also being significant com-
ponents of shale gas. Other examples of largely un-

tapped research areas with significant opportunity to
provide fundamental insights to more mainstream topics
include simulated shale gas feeds [25], carbon-
heteroatom coupling [16,25,26], and the effect of tem-
perature on the plasma [27]. If plasma is to overcome
the challenges outlined above and contribute to the
electrification of the chemical industry, then significant
Science. Accessed 8/26/2024.
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advances are needed in the key areas of plasma
modeling, in situ/operando methods, and plasma-
material dynamics.

Standardization of results
There is a pressing need within the plasma catalysis
community for standard practices that support com-
parisons across experiments, reactors, and laboratories.
Standardization is complicated by the interconnected
nature of the multiple parameters present in a single
plasma catalysis experiment. For example, it has been

suggested that the field adopt standard plasma sources
and/or standard catalytic materials that would provide a
basis for comparison [28]. This approach may present
challenges in yielding meaningful comparisons, as the
catalyst and plasma are coupled and cannot be truly
isolated from each other. Thus, for a standard to be
successful, it must consider plasma and catalyst as a
single unit and be able to normalize and compare them
with other units. This is currently accomplished with
“black box” evaluations that do not depend on the
nature of the technology (e.g., conversion-selectivity

plots and efficiency reports), in addition to compre-
hensive reporting of experimental conditions in accor-
dance with good laboratory practices [29]. Recent
attempts to consolidate recommended best practices
have been made in both the plasma-catalysis community
[30] and nonthermal plasma community at large [31];
the most appropriate quantities to measure and how to
measure them remains to be agreed upon.

In situ and operando studies
As in traditional heterogeneous catalysis, in situ/oper-
ando spectroscopies (i.e., observation during operation,
ideally with simultaneous observation of performance)

promise to deliver molecular-level insight by revealing
the state of the plasma and catalyst under relevant
operating conditions. The challenges are amplified,
however, by the dynamic (temporal, spatial, composi-
tional) character of the plasma as well as the catalytic
surface. There have been several notable in situ plasma
techniques developed in the past couple years [32e37],
but has this direction actually led to more fundamental
understanding and is it worth continuing? We argue that
both answers are yes. It is (so far) unrealistic to expect
to observe, in situ/operando, transient events that have

time scales of a plasma filament lifetime or likely even
the response of a catalyst to a transient filament. Thus,
the value of in situ/operando techniques rather lies in
connecting the dots between the initial state and the
final state of the catalyst as it turns over. This sub-field
has produced recent discoveries on key differences be-
tween plasma-catalysis and thermal-catalysis mecha-
nisms for CO2 hydrogenation [36,38], oxide
hydrogenation [34], and amine oxidation [32], giving a
starting point for the rational design of plasma-specific
catalysts and justifying the existence of the field.
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However, the results to date narrowly apply to specific
cases, which leaves significant room for further in situ
studies probing light alkane chemistries.

Modeling
Plasma-catalytic models begin with mechanisms and
kinetic parameters to describe the chemistries in ho-
mogeneous and heterogeneous phases. While the ther-
mal and, to a lesser extent, surface reactions of reactive
hydrocarbon intermediates are available from the com-
bustion and heterogeneous catalysis communities,

electron impact cross-sections for hydrocarbons of
carbon number greater than propane are absent from the
popular LxCat.net database [39]. Thus, reliable data,
either from observations or models [40], will be neces-
sary to predict the efficiency and products of electron
impact reactions with higher hydrocarbons. Insights
from models on the lower hydrocarbons will provide
insights into potential opportunities and potentially
even useful approximate representations for the higher
homologs.

Typical plasma technologies used for plasma catalysis
applications are inherently inhomogeneous, either
spatially due to filamentary behaviors or temporally in
AC and pulsed plasmas [41]. This inhomogeneity poses
both limitations and possibilities for plasma catalysis,
but in either case, it creates a significant challenge for
modeling efforts. Assumptions must be made that
simplify the complexity of inhomogeneous modeling,
and the validity of these assumptions must be rational-
ized. Machine learning has been used to either decrease
the computational cost of low-assumption models, such

as fluid-based techniques [42], or to make up for
assumption-induced errors by tuning models to experi-
mental data and exploring optimization of those systems
[43e45]. Other studies validate assumptions based on
theoretical standing (including density functional
theory results) [9,46e48] or based on the ability for a
model to recover experimental observations without
tuning [26,49].

The community has often measured the success of a
model by its ability to faithfully recover experimental

observations, typically with the constraint that the un-
derlying model assumptions (mechanisms, plasma
characteristics,.) are physically robust and as complete
as possible [9,14,45]. In our opinion, there exists an
opportunity and a need to develop models that explore
the fundamental boundaries of plasma catalysis, that
identify the characteristics (of plasma, of material, of
their coupling and operation) necessary to achieve a
desired performance. Such discovery-focused models
are more forward-looking, designed to provide guidance
for new plasma-catalysis materials, reactor designs, and

operating strategies, as opposed to rationalization of
existing observations. A salient analogy is the growing
www.sciencedirect.com
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interest in dynamic catalysis, inspired first by discovery
models that pointed to its potential [50]. As in the dy-
namic catalysis case, discovery-focused plasma catalytic
models would point the community in the most pro-
ductive directions and inspire creative engineering. And
as in the dynamic catalysis case, ultimately those pre-
dictions must be realized and validated in the laboratory.
These models, in conjunction with insights provided by

traditional, validation-focused models, would provide
the community with expanded capability, inspire crea-
tive engineering, and point the direction
toward practically useful plasma catalysis.

Plasma-material dynamics
The physics of plasma-material interactions are fairly
well known from the extensive use of plasmas in the
semiconductor industry [51] and in nuclear fusion [52].
Plasma-material interaction physics that are relevant for
plasma catalysisdincluding sheath physics for multi-
physics modeling, mechanisms of electric field
enhancement by surfaces, and descriptions of high-
energy-particle collisions with materialsdare increas-

ingly being applied [5]. Recent experimental studies
[16,53,54] look at how a plasma alters a surface and how
it changes because of the surface of a catalyst particle,
both with and without metal loading, and with metal
electrodes. These studies reveal that localization of
plasma intensity around the edge of catalyst particles,
and on the electrode itself, can enhance the chemistry;
thus, an opportunity exists to exploit this synergistic
intensification within plasma catalysis, if the enhance-
ment can be properly engineered. Simultaneously,
carbon growth (e.g., coking) and hotspots that lead to

catalyst degradation can be better avoided with insight
of the plasmaesurface interactions. Additionally, there
is an opportunity to use the unique properties of
plasmas to alter catalyst particles, including catalyst
regeneration and preparation [55,56]. Reactor designs
should be explored to investigate whether these alter-
ations could be implemented in situ for improved
reactor performance in real time.

Bridging the scale-up gap
There are several real-world examples of scaled-up
plasma reactors currently being used for pollution
treatment (ozone production, NOx and SOx removal,

breakdown of particulate matter) [57]. These com-
mercial reactors provide a starting point for the cost,
design, and operation of a plasma reactor for light hy-
drocarbon applications. However, processing light hy-
drocarbon feedstocks for chemical production comes
with additional challenges, such as coke production,
robustness to mixed reactant feeds, and product selec-
tivity acceptable to a given application. The re-
sponsibility to de-risk these obstacles falls to the
research community. In practice, this requires long-
term, high throughput testing of the most promising
www.sciencedirect.com C
setups under realistic conditions. While such experi-
ments are unlikely to yield significant fundamental
insight, they are nevertheless important to advancing
the field. There is also merit to considering alternative
reactor design strategies that make sense at scale, but
have less efficacy in lab-based research. For instance,
plasma catalysis may be amenable to chemical looping
strategies that decouple the reactant consumption stage

from the product generation stage and allow products to
be collected without downstream separation
steps [58,59].
Concluding remarks
This perspective highlights the fundamental insights
gained recently in plasma catalysis, while also pointing
out where there is still a need for future insight and
innovation. As the energy and chemicals landscape tilts
toward decentralized carbon sources, point-of-use re-
actors thatmake use of local available energy will become
increasingly important. Plasma catalysis is well-poised to
be successful in this space, particularly as renewable
energy becomes more readily available and less expen-
sive. To capitalize on this potential, the community must
resist the temptation to conduct “sandwich” studies that

merely report the results from a random combination of
plasma type, catalyst, support, feed, chemistry, etc. [60].
Rather, there is significantly more interest in studies that
seek to understand the dynamics between catalyst and
plasma, particularly in the areas of computational
modeling and in situ/operando methods. Overall, we
believe that fundamental insights do have the potential
to guide plasma-catalytic light alkane conversion toward
a positive role in lowering the carbon footprint of the
energy and chemicals industries.
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