
Summation-based Private Segmented Membership Test from
Threshold-Fully Homomorphic Encryption
Nirajan Koirala

University of Notre Dame
nkoirala@nd.edu

Jonathan Takeshita
University of Notre Dame

jtakeshi@nd.edu

Jeremy Stevens
University of Notre Dame

jsteve22@nd.edu

Taeho Jung
University of Notre Dame

tjung@nd.edu

ABSTRACT
In many real-world scenarios, there are cases where a client wishes
to check if a data element they hold is included in a set segmented
across a large number of data holders. To protect user privacy, the
client’s query and the data holders’ sets should remain encrypted
throughout the whole process. Prior work on Private Set Intersec-
tion (PSI), Multi-Party PSI (MPSI), Private Membership Test (PMT),
and Oblivious RAM (ORAM) falls short in this scenario in many
ways. They either require data holders to possess the sets in plain-
text, incur prohibitively high latency for aggregating results from a
large number of data holders, leak the information about the party
holding the intersection element, or induce a high false positive.

This paper introduces the primitive of a Private Segmented Mem-
bership Test (PSMT). We give a basic construction of a protocol to
solve PSMT using a threshold variant of approximate-arithmetic
homomorphic encryption and show how to overcome existing
challenges to construct a PSMT protocol without leaking infor-
mation about the party holding the intersection element or false
positives for a large number of data holders ensuring IND-CPA𝐷
security. Our novel approach is superior to existing state-of-the-art
approaches in scalability with regard to the number of supported
data holders. This is enabled by a novel summation-based homo-
morphic membership check rather than a product-based one, as
well as various novel ideas addressing technical challenges. Our
PSMT protocol supports many more parties (up to 4096 in experi-
ments) compared to prior related work that supports only around
100 parties efficiently. Our experimental evaluation shows that our
method’s aggregation of results from data holders can run in 92.5s
for 1024 data holders and a set size of 225, and our method’s over-
head increases very slowly with the increasing number of senders.
We also compare our PSMT protocol to other state-of-the-art PSI
and MPSI protocols and discuss our improvements in usability with
a better privacy model and a larger number of parties.

KEYWORDS
Multi-party private set intersection; Private membership test; Fully
homomorphic encryption

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 209–225
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0114

1 INTRODUCTION
Privacy concerns often limit the collaboration of entities in the
case where each entity has private data that must be shared for
joint usage. In many cases, the private data is generated and stored
in a distributed manner, and methods of sharing data privately in
such scenarios open avenues for new applications. There are many
real-world scenarios where this problem needs to be solved.

One example of this is the case where federal tax authorities
want to learn whether any suspected tax evaders maintain accounts
in both domestic and foreign banks that might be under scrutiny
and, only if so, obtain their account records and details. The banks’
locations in different jurisdictions prohibit the disclosure of account
holders, and the tax authorities cannot openly divulge their list
of suspects. Institutions under such scrutiny want to collaborate
anonymously to avoid any bad publicity for being linked to a tax
fraud operation. In many cases, these institutions are willing to
collaborate with the tax authorities [60], and they themselves also
wish to exercise rigorous scrutiny when extending loans to new
and existing customers to mitigate potential risks. However, many
financial privacy laws [85] prohibit banks from revealing customer
data to third parties without consent. There are currently over 4,700
FDIC-insured banks in the United States. When a customer applies
for a loan with one of them, collaboration and sharing of exist-
ing fraud lists can make the decision process significantly more
trustworthy. In such cases, banks do not wish to share their private
data on fradulent activities, and they do not even wish to disclose
whether a queried customer is on their “fraud watchlist” due to var-
ious privacy and legal concerns. Such a secure membership query
scenario could also include credit card companies, tax-collection
agencies, and similar entities, necessitating the involvement of
many parties in the decision-making process. A data-sharing proto-
col that allows queriers to learn only whether a queried entity exists
in distributed fraud lists would help such institutions examine a
person’s credibility beyond the nation.

As another example, many government agencies (e.g., FBI, CIA)
maintain sensitive lists of secret agents or watchlists distributed
across its multiple divisions and branches. Data sharing for identity
verification, background checks, security clearance, or watchlist
screening requires many government entities to work together. For
example, a querier may want to verify an individual’s presence in
these entities’ databases without inferring any membership details
to verify the identity or the background. Doing so over distributed
databases is nontrivial due to the challenges of sharing personally
identifiable information (PII). It is desirable and even imperative

209

https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0114

Proceedings on Privacy Enhancing Technologies 2024(4) Koirala et al.

*Threshold FHE (w/ public key pk & secret-key shares ski) is used
 for key management and security.

Result

Querier

D
at

a
ow

ne
rs

sk0

sk3

Outsource data
& computation

Cloud Storage

sk1

sk2

sk4

pk

pk

pk

pk

Figure 1: Conceptual illustration of Private SegmentedMembership
Test (PSMT)

that the records be stored in encrypted forms across a large number
of distributed servers such that each record is under strict secu-
rity/privacy protection (e.g., DHS Use Cases [86]). Similarly, the
auto and medical insurance industries involve highly distributed
records, and a protocol to query such databases can minimize risks.

In all the examples above, we face a problem where the number
of entities involved in data-sharing applications can be substantial,
e.g., thousands of entities when dealing with tax fraud [96]. Fur-
thermore, datasets are updated frequently, and regulations force
such datasets containing PII to be stored and operated with strong
data security guarantees [36]. These examples all underscore the
growing need for privacy-preserving set intersection protocols with
a substantial number of dataset holders. There is a need to perform
queries by testing the membership of a client’s element within
distributed datasets without leaking information about which set
the intersection came from. We call this property provenance pri-
vacy, which refers to the confidentiality of from which party the
intersection comes from. These datasets are updated frequently
and held by multiple distinct parties, which should be strictly pro-
tected to ensure individual privacy. For this purpose, storing and
using records in encrypted form can safeguard against data breach
attacks or insider threats. This allows data holders (e.g., Amazon
AWS or Microsoft Azure) to hold their customers’ (data owners’)
data in encrypted form to comply with privacy regulations. These
data holders store and operate on the encrypted data provided by
their clients or data owners (e.g., financial institutions, hospitals,
tax-collecting, and law-enforcement agencies) on their behalf. This
scenario is different from those considered by privacy-preserving
techniques such as PSI, MPSI, PMT or ORAM (detailed below and
in Section 2) in multiple ways. We term this problem in such a
scenario with multiple data holders Private Segmented Membership
Test (PSMT). A conceptual illustration of PSMT is given in Figure 1.

Existing approaches, such as private set intersection (PSI), fall
short in numerous ways for those scenarios. PSI enables two par-
ties (referred to as receiver and sender hereafter by convention
[42, 82, 93]) to compute set intersections without revealing any
additional information. While existing PSI protocols can address
the PSMT, they require dataset holders to access the elements of

their sets in plaintext format [22] to enable various optimizations
for polynomial interpolation, and they do not scale well with a high
number of parties. Thus, for situations with encrypted databases
with sensitive information such as medical, financial, or criminal
records, PSI is not suitable. Generic multiparty-PSI (MPSI) proto-
cols like [10, 17, 70, 84, 107, 109] are also less suitable for efficiently
solving PSMT due to a high number of interactions (in OT-based),
privacy concerns against the senders, high aggregation runtime,
bandwidth or storage needs. Additionally, Private Membership Test
(PMT) protocols [97], optimized for single elements, require unen-
crypted databases, may produce high false positives due to filters for
representing the database [32], and are not designed for multiparty
use without compromising the provenance privacy of the senders.
ORAM-based (Oblivious RAM) techniques enhance data security by
enabling encrypted datasets; however, they cannot handle a high
number of servers and multiple clients without a non-collusion
assumption and typically require a private state for each client
interacting with the ORAM server.

Fully Homomorphic Encryption (FHE) is a widely used build-
ing block for constructing PSI protocols due to its single-round
communication requirement. However, PSI protocols based on
FHE,[20, 22, 37], face several challenges in addressing the PSMT
problem, including key management, efficiency, and security issues.
Theoretically, given a set held by the sender𝑋 and receiver query 𝑦,
existing PSI protocols homomorphically compute a sender polyno-
mial, 𝑓 (𝑦) = 𝑟∏𝑥 ∈𝑋 (𝑥−𝑦), where 𝑟 is a randommask. To apply this
method for PSMT, each sender would individually calculate their
own sender polynomial, after which the multiplicative aggregation
of these polynomials would correctly be an encryption of zero for
an intersection and a random nonzero value otherwise. However,
it would require FHE parameters that can tolerate 𝑂 (𝑙𝑜𝑔(𝑙)) addi-
tional multiplicative depth for even a moderately large number of
parties 𝑙 (e.g., 𝑙 = 64). Sender partitioning, although reducing mul-
tiplicative depth during polynomial computation, increases depth
during result aggregation, particularly with multiple sender poly-
nomials resulting from multiple senders. Moreover, using solely
FHE to solve PMST would require non-collusion among all the
parties, and a malicious receiver holding FHE secret keys would
be able to monitor and decrypt all communications to/from the
senders. Threshold-FHE can be used to handle such issues, where
secret key shares are distributed to the parties. It facilitates better
key management, prevents unauthorized decryption, and avoids a
single point of failure if one of the parties acts adversarially.

Our PSMT protocol handles encrypted input for both the re-
ceiver’s element and sets held by the sender and does not rely on
any preprocessing (besides encryption) of the sets beforehand, com-
pletely eliminating the need for the senders to access the sets in
plaintext during query computation. Our protocol’s construction is
based on threshold-FHE, where the parties use cheap homomorphic
additions to aggregate ciphertexts gathered from multiple sites. Us-
ing 𝛼-out-of-𝑙 threshold-FHE, our protocol can handle up to 𝛼 − 1
colluding parties where 𝛼 < 𝑙/2. The security of our protocol is
derived from the post-quantum security of FHE [2], and it upholds
the provenance privacy of the senders to the receiver. We provide
further security countermeasures for adversaries in the IND-CPA𝐷
model by using existing noise-smudging techniques. We assume

210

Summation-based Private Segmented Membership Test from Threshold-Fully Homomorphic Encryption Proceedings on Privacy Enhancing Technologies 2024(4)

a semi-honest model where all parties operate on homomorphi-
cally encrypted datasets. In summary, we construct a protocol that
can tolerate a large number of senders and efficiently compute on
encrypted sender sets that may require frequent set updates.

The contributions of this work are summarized as follows:

• We define the Private Segmented Membership Test (PSMT) prob-
lem, which is widely relevant to real-world scenarios. Existing
approaches result in various limitations, and we present a novel
solution to address them.
• We address the shortcomings of existing PSI and MPSI-based
approaches using finite-field FHE for solving PMST, which re-
sults from encrypted user data segmented across many senders
and high aggregation latency. For the first time, we provide a
novel summation-based set intersection protocol with approxi-
mate arithmetic threshold-FHE that overcomes these limitations
and handles collusion among parties under an honest majority
assumption, providing IND-CPA𝐷 security.
• For the technical challenges in solving the PSMT problem with
our novel solution, including plaintext domain size, function ap-
proximation accuracy/latency, throughput, and parameterization,
we provide concrete parameters and novel strategies to deal with
such issues and achieve good performance even for a very large
number of senders and set sizes.
• We implement our method and present an experimental evalua-
tion of our solution to show its significant performance advan-
tage in the case of a large number of senders. Our anonymized
source code is available for reproducibility and future research
at https://anonymous.4open.science/r/psmt-7777. We show up
to 2.4× to 5.6× performance improvement over previous works.

2 RELATEDWORK
2.1 Private Set Intersection (PSI)
The first PSI protocol was based on the Diffie-Hellmann (DH) key
agreement scheme [77]. This protocol leveraged the commutative
properties of the DH function and offered security against the
random oracle model. Its low communication cost continues to
serve as a foundation for many modern PSIs. Freedman et al. [48]
introduced PSI protocols based on oblivious polynomial evaluation
(OPE) where sets are represented as polynomials. Additionally, PSI
protocols have been constructed using Oblivious Pseudo-Random
Functions (OPRFs) [47, 62], garbled circuits [90, 110], oblivious
transfer (OT), and OT-extension [45, 69, 88, 94, 98]. Recent PSI
protocols for unbalanced set sizes use OPE and increasingly utilize
FHE with post-quantum security [20, 22, 37, 61, 102].

The two-party Private Set Intersection (PSI) model is extensively
studied due to its wide real-world applications. Several variants of
this model exist, where either both parties learn the intersection
(mutual PSI) [43, 58] or only one of the parties learns the intersec-
tion (one-way PSI) [22, 92]. Other variants also allow the computa-
tion of different functions on the intersection [35, 43, 58, 59, 111].
Many of these protocols scale to millions of items within seconds
and are only slightly slower than the simple but insecure method
that exchanges hashed items. Pinkas et al. [94] used (1-out-of-n)
OT based on [68]. The limitation of their approach is that OT step
requires the sender to access elements in the hash table’s bins,

and extending it to substantial parties requires multiple Oblivi-
ous Pseudo-Random Function (OPRF) evaluations via OT, greatly
increasing communication overhead.

CLR17 [22] protocol, and its improved variants [20, 37] are state-
of-the-art FHE-based PSI protocols to the best of our knowledge.
The basic protocol in [22] has the sender sample a uniformly random
non-zero element 𝑟𝑖 and homomorphically compute the intersec-
tion polynomial 𝑧𝑖 = 𝑟𝑖

∏
𝑥 ∈𝑋 (𝑐𝑖 − 𝑥) using encrypted receiver’s

set (𝑐1, 𝑐2, . . . , 𝑐𝑛) and the sender’s unencrypted elements 𝑥 ∈ 𝑋 .
𝑧𝑖 is returned to the receiver, who concludes that 𝑦 ∈ 𝑋 iff 𝑧𝑖 =
0. The receiver only learns the presence of an intersection. The
CLR17 protocol applies many optimizations, including receiver and
sender side batching using cuckoo hashing and binning, SIMD (Sin-
gle Instruction Multiple Data) using FHE, and windowing. Later
works, [20, 37] used an OPRF preprocessing on the encoded sender
set, achieved malicious security, applied the Paterson-Stockmeyer
algorithm for evaluating the intersection circuit, and reduced the
communication by using extremal postage-stamp bases. These pro-
tocols require the sender to access the set in plaintext for the afore-
mentioned optimizations and encodings for creating the polynomial
for interpolation. Consequently, the privacy of datasets held by the
sender is only protected against the receiver and not against the
sender. Fundamentally, the CLR17-based protocols perform PSI by
employing zero as a multiplicative annihilator in the polynomial∏
𝑥 ∈𝑋 (𝑦 − 𝑥). Adapting these methods to the multi-party scenario

would drastically increase the multiplicative depth required to ob-
tain the query result and result in scalability issues.

2.2 Multi-Party PSI (MPSI)
Multi-party PSI (MPSI) extends the two-party PSI problem to sce-
narios involving more than two parties. Two-party PSI protocols
can be extended to multiple parties to handle the MPSI scenario;
however, these solutions often lead to privacy and performance is-
sues [108]. Several techniques have been employed to design MPSI,
such as circuit-based computations [91], bloom filters [8, 80, 81],
OPE [26, 48, 66], and OT and permutation-based hashing [89].
Kolesnikov et al. [70] used a technique based on oblivious evalu-
ation of a programmable pseudorandom function (OPPRF) to im-
plement a time-efficient MPSI protocol for large amounts of items.
However, their time complexity scales quadratically w.r.t the num-
ber of parties in the protocol. Chandran et al. [17] improves upon
[70] in terms of communication and extends it to circuit-based PSI
and quorum-PSI. Notably, these protocols provide intersection re-
sults to all or some parties based on the intersection outcome and
do not support a substantial number of parties.

Badrinarayanan et al. [6] employ threshold FHE to construct
threshold MPSIs with sublinear communication complexities with
thresholds proportional to the number of elements in datasets. They
use a similar polynomial encoding of each set element as in [22].
Bay et al. [7] provide two MPSI protocols based on bloom filters and
threshold homomorphic public-key techniques. Their protocol per-
forms better than previous state-of-the-art [70] in terms of run time,
given that the sets are small and a large number of senders exist.
Nevo et al. [84] construct concretely efficient malicious MPSI pro-
tocols based on the recently introduced primitives such as OPPRF
and oblivious key-value store (OKVS).

211

https://anonymous.4open.science/r/psmt-7777

Proceedings on Privacy Enhancing Technologies 2024(4) Koirala et al.

Table 1: Comparison of existing works to our work. Notation: 𝑙 parties; 𝛼 parties are corrupted and colluding; S.A.S: Security against the
senders; L.F.P.: Low false positive rate (less than 10−3); Agg. Comp.: Multiplicative aggregation overhead of FHE; OPRF, OPPRF, DFP, and HE
denote Oblivious Pseudorandom Function, Oblivious Programmable Pseudorandom Function, Distributed Point Function, and Homomorphic
Encryption, respectively. Post-Quant. refers to the security against quantum computer-capable adversaries; − denotes not applicable.

Protocol Construction Class Post-Quant. S.A.S L.F.P. Agg. Comp. Collusion Rounds Adversary Model
Chen et al. [22] FHE PSI ✓ × ✓ O(log 𝑙) − 2 Semi-honest
Chen et al. [20] FHE, OPRF PSI × × ✓ O(log 𝑙) − 2 Malicious
Cong et al. [37] FHE, OPRF PSI × × ✓ O(log 𝑙) − 2 Malicious

Kolesnikov et al. [70] OPPRF MPSI × × ✓ − 𝛼 < 𝑙 4 Semi-honest
Ramezanian et al. [97] Bloom/Cuckoo Filter, HE PMT × × × − − 2 Semi-honest

Pinkas et al. [94] Oblivious Transfer PSI × × ✓ − − 2 Semi-honest
Bay et al. [7] Bloom Filter MPSI × × × − 𝛼 < 𝑙 5 Semi-honest

Nevo et al. [84] OPPRF, OKVS MPSI × × ✓ − 𝛼 < 𝑙 4 Malicious
Vadapalli et al. [104] DPF ORAM × ✓ ✓ − − log 𝑙 + 1 Semi-honest

This work Threshold FHE PSMT ✓ ✓ ✓ O(1) 𝛼 < 𝑙/2 4 Semi-honest

2.3 Other Similar Methods
Private Membership Test (PMT). PMT, or Private Set Inclusion,
is a similar problem to PSI, in which a receiver learns if their sin-
gle element is included in a sender’s database without revealing
anything to the sender. To solve PMT, many works apply Private
Information Retrieval (PIR) based protocols that allow a user to re-
trieve an item from a database without the database owner learning
anything about the item [34, 50, 72, 83]. PSMT closely matches the
PIR; however, the sender’s database is public in PIR. PMT has been
extensively studied, particularly for two-party PSI in malware de-
tection [97]. While hashing seems a naive solution for low-latency
multi-party PMT, it becomes insecure with low-entropy input do-
mains, and even high-entropy input domains, it may leak repeated
elements upon consecutive executions. One can solve PSMT using
individual PMT protocols with all senders via 1-out-of-𝑛 OT-based
PMTs, followed by a secure XOR computation by the client. How-
ever, this approach has several drawbacks. Firstly, it necessitates
sender access to plaintext sets for OT, losing privacy. Secondly, it
requires the client to run 𝑛 PMT protocols with 𝑛 senders, adding
extra communication and computation. While OT extension-based
protocols can reduce communication, they also demand access to
plaintext sets, and any updates in databases result in significant
performance and communication penalties.

Some works have applied the PIR protocols to the PMT problem
[32, 97] based on homomorphic encryption and bloom filters, but
they induce significantly high false positives. Kulshrestha et al.
[71], and Wang et al. [106] have constructed PMT protocols for
identifying harmful media content and to detect password reuse
across multiple websites, respectively. Tamrakar et al. [103] propose
a carousel method for PMT for solving malware detection based
on Trusted Execution Environments (TEEs). However, TEEs suffer
from side-channel attacks and hardware-based attacks [19, 53, 76,
105], which have decreased their confidence for use recently.
Oblivious RAM (ORAM). ORAM allows a client to outsource
storage of data to a server, and enable read and write operations to
that data without revealing anything to the server about the data
[52]. Many state-of-the-art ORAM frameworks [56, 57] require
only constant client bandwidth blowup and low client storage but
rely on weaker non-cryptographic security assumptions. ORAM-
based techniques can be employed to solve PSMT but only partially.
Namely, it is primarily designed for a single private database that

can only be accessed by a single client, and using multiple servers
requires a strong non-collusion assumption between them [56].
Distributed ORAM (DORAM) is a variant that handles multiple non-
colluding servers and can be used for PSMT, but data is duplicated
across the servers in DORAM. Furthermore, DORAM has higher
bandwidth requirements and induces significant overheads while
scaling for a higher number of senders. DUORAM [104] is one of the
state-of-the-art DORAMmodels, however, it provides instantiations
for up to only 3-party computation, which is far less than the scale
involved in our scenario. Although the database on the server is
encrypted in ORAM (similar to PSMT), ORAM requires the client to
have a private state, due to which multiple clients cannot interact
with the ORAM server directly, and more importantly, any querier
who doesn’t have access to this state cannot interact with the server.

In summary, PSMT can be addressed using general PMT-solving
methods based on PIR, OT, ORAM, or TEEs, but they only offer
partial solutions. The considerable overhead for a large number
of senders, a lack of privacy for datasets held by senders, either
from the client or the sender(s), along with high latency and low
throughput typically associated with PMT protocols [103], render
them impractical for efficient PSMT solutions. We compare repre-
sentative works to our work in Table 1.

3 PRELIMINARIES & DEFINITIONS
In this section, we summarize some of the important notations for
FHE and PSMT. We provide a complete list of notations in Table 2.

3.1 Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) is a cryptographic primitive
that allows computation on encrypted data with post-quantum secu-
rity. Noise associated with an FHE ciphertext grows corresponding
to each homomorphic operation, i.e., additively with additions and
multiplicatively with multiplications. The most prominent FHE
schemes are BGV [16], B/FV [14, 46], CKKS [28], and TFHE [33]. In
practice, FHE schemes are often implemented as Somewhat Homo-
morphic Encryption (SHE) schemes where the user(s) provide the
multiplicative depth required by the computation at the setup phase.
In this work, we use the CKKS scheme, which uses a fixed-point
complex number encoding to enable homomorphic computations
on real numbers. Similar to B/FV and BGV, CKKS has operands in
R = Z[𝑋]/⟨Φ𝑀 (𝑋)⟩, where Φ𝑀 (𝑋) is the cyclotomic polynomial

212

Summation-based Private Segmented Membership Test from Threshold-Fully Homomorphic Encryption Proceedings on Privacy Enhancing Technologies 2024(4)

Table 2: List of notations and descriptions

Notation Description
𝑙 The total number of parties (𝑙 − 1 senders)
𝑋𝑖 Set of the 𝑖th sender (owned by the data-owner)
𝑋𝑙−1 Senders’ leader
X Union of the senders’ sets
𝛿 The length of the bit-string
𝑐𝑥𝑖 Ciphertext of the 𝑖th sender
𝑐𝑦 Ciphertext of the receiver
𝑁 The ring dimension in FHE (power of 2)
𝑞 Ciphertext modulus
𝐷 The FHE multiplicative depth
𝜂 The batch size of FHE scheme
𝛼 Number of secret-key shares
𝜎 Standard deviation of smudging noise
𝑎 Number of adversarial queries
𝑠 Statistical security bits
𝜆 Computational security bits
𝐷𝑅,𝜎 Discrete Gaussian noise distribution
𝐿 Lower bound of interval for DEP
𝑅 Upper bound of interval for DEP
𝑛 Number of iterations for DEP
𝑐 Degree of polynomial for Chebyshev approximation
𝑗 Count of 1𝑠𝑡 homomorphic square operation
𝑘 Count of 2𝑛𝑑 homomorphic square operation
𝜌 Scaling factor for reducing false positives
𝜏 Threshold required to confirm an intersection
𝜅 Limit for the random mask
diff𝑖 FHE-ciphertext (vector denoting 𝑐𝑥𝑖 − 𝑐𝑦)
etan𝑖 () A piecewise function that takes diff𝑖 as input
𝐾 Output of etan𝑖 () when input is 0 (maxima of VAF)
𝑆 Parameter for controlling input range of 0 in VAF

(𝑥𝑁 + 1) of order 𝑀 = 2𝑁 (cyclotomic index) and degree 𝑁 ∈ Z
which is the ring dimension. CKKS parameters include the ring
dimension, ciphertext modulus, and standard deviation of the error.
We employ the CKKS parameters to maintain 128-bit security in
both classical and quantum contexts [3, 73, 78].
SIMD: In FHE, we can consider the factorization of (𝑥𝑁 +1) modulo
𝑝 where 𝑝 is a prime. We can then write the message space as a
direct product of small fields, encrypt a vector of elements of these
fields, and operate in parallel on the entries of these vectors, thus
obtaining single instruction, multiple data (SIMD) capabilities [101].

In general, we have (𝑥𝑁 + 1) = 𝑓1 (𝑋). · · · .𝑓𝜂 (𝑋) (mod 𝑝) with
all 𝑓𝑖 ’s having the same degree 𝑑 such that 𝑁 = 𝜂 · 𝑑 and message
space is Z𝑝 [𝑋]/⟨𝑥𝑁 + 1⟩ =

∏𝜂

𝑖=1 (Z𝑝 [𝑋]/⟨𝑓𝑖 (𝑋)⟩) = (F𝑝𝑑)
𝜂 . The

plaintext space is isomorphic to 𝜂 copies of the finite field with
𝑝𝑑 elements, and instead of encrypting one single high-degree
polynomial, we can encrypt a vector of𝜂 elements of F𝑝𝑑 . Therefore,
a single homomorphic operation can handle𝜂 messages, each stored
in a ciphertext slot, with the total slots and batch size equals 𝜂.

3.2 Threshold FHE
For the threshold functionality in our protocol, we utilize 𝛼-out-of-𝑙
(leveled) threshold-FHE (thresFHE) where 𝑙 is the number of parties
and 𝛼 is the minimum number of partial decryptions needed to com-
plete the decryption [11]. A thresFHE scheme consists of a tuple

of probabilistic polynomial time (PPT) algorithms (ThresFHE.Enc,
ThresFHE.Eval, ThresFHE.PartialDec), and two 𝑙-party protocols
(ThresFHE.KeyGen, ThresFHE.Combine) with the following func-
tionalities:

• ThresFHE.KeyGen(1𝜆, 1𝐷 , 𝑝𝑎𝑟𝑎𝑚𝑠) → (𝑝𝑘, 𝑒𝑣𝑘, {𝑠𝑘𝑖 }𝑖∈[𝑛]) :Given
a security parameter 𝜆 and a depth 𝐷 , each party 𝑃𝑖 outputs a
common public key 𝑝𝑘 for encryption, a common evaluation key
𝑒𝑣𝑘 , and a secret key share 𝑠𝑘𝑖 of the implicitly defined secret
key 𝑠𝑘 under some public parameter 𝑝𝑎𝑟𝑎𝑚𝑠 .
• ThresFHE.Enc(𝑝𝑘,𝑚)→ 𝑐: Given a public key 𝑝𝑘 , a message𝑚,
the encryption algorithm uses error distributions 𝜒𝑒𝑛𝑐 and 𝜒𝑒𝑟𝑟
to sample 𝑢 ← 𝜒𝑒𝑛𝑐 and 𝑒0, 𝑒1 ← 𝜒𝑒𝑟𝑟 and outputs 𝑐 ← 𝑢 · 𝑝𝑘 +
(𝑚 + 𝑒0, 𝑒1) mod 𝑞 such that, 𝑐 = (𝑐0, 𝑐1) where the ciphertext
space is defined as R2𝑞 = (R/⟨𝑞⟩)2.
• ThresFHE.Eval(𝑒𝑣𝑘, 𝑓 , {𝑐𝑘𝑖 }𝑖∈[𝑣])→ 𝑐∗: Given an evaluation key
𝑒𝑣𝑘 , a 𝑣-input function, 𝑓 that can be evaluated using at most
depth 𝐷 and ciphertexts 𝑐𝑖 , the evaluation algorithm outputs a
new ciphertext 𝑐∗ that is an encryption of 𝑓 (𝑚1, . . . ,𝑚𝑣). where
𝑐𝑖 ← ThresFHE.Enc(pk ,𝑚𝑖).
• ThresFHE.PartialDec(𝑐, 𝑠𝑘𝑖 , 𝜒𝑠𝑚𝑔 (𝐵𝑠𝑚𝑔)): Given a ciphertext 𝑐 =
(𝑐0, 𝑐1), a secret key share 𝑠𝑘𝑖 and a smudging error distribution
𝜒𝑠𝑚𝑔 (𝐵𝑠𝑚𝑔) with a bound 𝐵𝑠𝑚𝑔 , the partial decryption algorithm
samples a smudging error 𝑒𝑠𝑚𝑔

𝑖
← 𝜒𝑠𝑚𝑔 (𝐵𝑠𝑚𝑔), and computes

𝑝𝑑𝑒𝑐𝑖 ← 𝑐1 · 𝑠𝑖 + 𝑒𝑠𝑚𝑔𝑖
.

• ThresFHE.Combine(𝑝𝑘, {𝑝𝑑𝑒𝑐𝑖 }𝑖∈[𝐼]) →𝑚 or ⊥: Given a public
key 𝑝𝑘 , a set of partial decryptions {𝑝𝑑𝑒𝑐𝑖 }𝑖∈[𝐼] for an index set
𝐼 ⊆ [𝑛] the combine algorithm computes 𝑐0 +

∑𝐼
𝑖=0 𝑝𝑖 mod 𝑞 and

outputs𝑚 if |𝐼 | ≥ 𝛼 otherwise ⊥.
The key generation phase in thresFHE can be accomplished

using a trusted setup procedure which can be run either via trusted
hardware or secure multiparty computation to broadcast partial
secret key to 𝛼 key-holders. Existing works [5, 64] have shown
that the latter method of key generation can be completed in a
two-round, 𝑙-party protocol to compute a common public key, a
common public evaluation key and a private share of the implicitly
defined secret key. Similarly, thresFHE final decryption is a one-
round 𝛼 party protocol. As in standard homomorphic encryption
schemes, we require that a thresFHE scheme satisfies compactness,
correctness, and security [6].

3.3 Private Segmented Membership Test (PSMT)
Problem Definition: The PSMT problem is described in Figure 2. For
a party 𝑃𝑦 , with a data element 𝑦, and 𝑙 − 1 parties 𝑃1, 𝑃2, . . . , 𝑃𝑙−1,
each with a set 𝑋𝑖 such that X =

∑𝑙−1
𝑖=1 𝑋𝑖 , a PSMT allows the party

𝑃𝑦 to learn {𝑦} ∩ X, without leaking any elements not in any 𝑋𝑖
or which party holds an element in the intersection. The sets held
by different senders in the PSMT are mutually exclusive or disjoint.
The parties involved are referred to as the sender and the receiver.
For strong protection of user data, each sender in PSMT, 𝑃𝑖 does not
have plaintext access to 𝑋𝑖 , i.e., each sender only has encryptions
of 𝑥 ∈ 𝑋𝑖 . PSMT outputs {𝑦} ∩⋃𝑙−1

𝑖=1 𝑋𝑖 to the receiver and nothing
to the senders without leaking any other information about the
receiver’s element and sets held by the senders.
Threat Model: PSMT protects the outsourced data owned by the
data owners from the semi-honest senders, and our threat model is

213

Proceedings on Privacy Enhancing Technologies 2024(4) Koirala et al.

Parameters: PSMT involves 𝑙 entities, namely 𝑃1, 𝑃2, . . . , 𝑃𝑙−1 and 𝑃𝑦
where, 𝑃𝑦 is the receiver, 𝑃𝑙−1 is the senders’ leader and the rest of the
parties are the senders. All senders possess encrypted sets of items with
a bit-length of 𝛿 . The receiver holds an element 𝑦 with a bit-length
of 𝛿 ; senders 𝑃1, . . . , 𝑃𝑙−1 hold encryption of sets 𝑋1, . . . , 𝑋𝑙−1, namely
𝑐𝑥1 , . . . , 𝑐𝑥𝑙−1 and we define X =

⋃𝑙−1
𝑖=1 𝑋𝑖 .

Input: Encryption of 𝑦 and encryptions of the sets 𝑋1, . . . , 𝑋𝑙−1.
Output: Receiver gets {𝑦 } ∩ X, and the senders, including the sender’s
leader, get ⊥.

Figure 2: Ideal functionality of PSMT

similar to that in previous works [9, 95]. The provenance privacy
of the senders is preserved in PSMT. This ensures that in the event
where 𝑦 ∈ 𝑋𝑖 , the set 𝑋𝑖 is hidden from the receiver, who only
learns that 𝑦 is in some sender’s set and not any particular set.
We do not consider membership inference attacks with repeated
adaptive queries. Such attacks can be mitigated by rate limiting
or OPRFs [20] at the cost of additional overhead from preprocess-
ing. Since parties are semi-honest, they are guaranteed to use the
actual inputs; therefore, there is no integrity tampering [55]. We
also do not consider integrity attacks where an adversary may ho-
momorphically modify the sender’s set. Securely storing hashes of
ciphertexts (e.g., in an isolated storage) can prevent this.
Adversary Model: We assume a semi-honest setting, where parties
(both senders and receiver) are assumed to be honest but curious.
For the threshold functionality, we employ 𝛼-out-of-𝑙 thresFHE that
can handle 𝛼 − 1 colluding participants where 𝛼 < 𝑙/2 such that the
majority of the participants are honest. Adversaries will try to learn
any of the receiver query 𝑦 (if the receiver is not compromised) and
the sender’s set elements 𝑥 ∈ 𝑋𝑖 . Adversaries may eavesdrop on
messages or compromise up to 𝛼 − 1 parties.

We note that in the rest of this paper, senders’ sets refer to the
encrypted sets of data owners that are held by the senders.

4 PSMT PROTOCOL
4.1 Basic Protocol Without Approximation
Protocols using FHE to implement PSI [20, 22, 37] use zero as a
multiplicative annihilator. Multiplications are not scalable, so we
propose the novel idea of using additive aggregation.

We consider set elements to be members of Z (e.g., hashed ele-
ments). We describe our basic protocol in Figure 3 as a strawman
protocol. The receiver has access to a query element 𝑦, and s/he
creates replicas of 𝑦 such that the number of replicas equals 𝜂
(batch-size) and encrypts them to obtain 𝑐𝑦 such that all slots of
𝑐𝑦 contain 𝑦. The receiver then sends 𝑐𝑦 to 𝑙 senders. Senders ei-
ther encrypt their sets themselves or receive the encryptions from
data owners through a secure communication channel. Thus, each
sender 𝑖 ∈ [1, 𝑙 − 1] has access to an encryption of a set 𝑋𝑖 , 𝑐𝑥𝑖 .
Each slot of 𝑐𝑥𝑖 contains different elements of 𝑋𝑖 . Due to batching,
each sender possesses only a single ciphertext. In case |𝑋𝑖 | > 𝜂,
the sender possesses multiple 𝑐𝑥𝑖 . Each sender 𝑖 then computes a
homomorphic difference of 𝑐𝑦 , and its ciphertext(s) 𝑐𝑥𝑖 in a SIMD
fashion to obtain diff𝑖 . Each sender 𝑖 then computes a piecewise

Input : Receiver provides a query element 𝑦; senders possess encryption
of sets 𝑋1, . . . , 𝑋𝑙−1, namely 𝑐𝑥1 , . . . , 𝑐𝑥𝑙−1 such that X =

⋃𝑙−1
𝑖=1 𝑋𝑖 . Each

set contains bit strings of length 𝛿 . 𝐾 is the output of the function etan()
when input is zero. 𝛿 , and 𝐾 are public parameters.
Output: Receiver outputs {𝑦 } ∩ X ; senders outputs ⊥.
1. Setup: The senders, the receiver, and the data owners jointly agree on

a public-key thresFHE schemewith the same ring dimension. Receiver,
senders, and data owners are provided an evaluation key 𝑒𝑣𝑘 and a
public key 𝑝𝑘 . A secure multi-party computation or trusted hardware
is used to distribute𝛼 partial decryption keys 𝑠𝑘1, 𝑠𝑘2, . . . , 𝑠𝑘𝛼 among
receiver and 𝛼 − 1 senders such that 𝛼 < 𝑙/2.

2. Encryption: The receiver encrypts its element 𝑦 such that all slots
of the resulting ciphertext 𝑐𝑦 contain replicas of 𝑦 and sends 𝑐𝑦 to
all of the senders. Senders encrypt each of sets 𝑋1, . . . , 𝑋𝑙−1 held by
them using 𝑝𝑘 . Alternatively, data owners perform the encryption of
the sets and send it such that, 𝑐𝑥1 , . . . , 𝑐𝑥𝑙−1 ciphertexts are possessed
by senders. If |𝑋𝑖 | > 𝜂, then sender 𝑖 possesses multiple ciphertexts.

3. Intersection: Using 𝑐𝑦 (s) each sender 𝑖:
a. Homomorphically computes diff𝑖 = 𝑐𝑦 − 𝑐𝑥𝑖 and etan𝑖 (diff𝑖) us-

ing 𝑒𝑣𝑘 . If possessing multiple ciphertexts, sender computes
multiple diff𝑖 and etan𝑖 (diff𝑖) with the rest of ciphertexts paral-
lelly and homomorphically summates them to a single etan𝑖 .

b. Sends etan𝑖 to a leader sender, who uses 𝑒𝑣𝑘 to homomorphically
compute, 𝑧 =

∑𝑙−1
𝑖=1 etan𝑖 . Leader sender returns the ciphertext 𝑧

to the receiver and 𝛼 − 1 senders for partial decryption.
4. Partial Decryption: Each sender 𝑖 such that 𝑖 ∈ [1, 𝛼 − 1] partially

decrypts 𝑧 using 𝑠𝑘𝑖 and sends their partial decryption to the receiver.
The receiver partially decrypts their share of 𝑧.

5. Result interpretation: The receiver combines 𝛼 partial decryptions
to decrypt 𝑧 and outputs

Result =
{
Included 𝑧 = 𝐾

Not Included 𝑧 ≠ 𝐾

Figure 3: Basic PSMT protocol

function 𝑒𝑡𝑎𝑛𝑖 (), defined below.

etan𝑖 (diff𝑖) =
{
𝐾, if diff𝑖 = 0
0, if diff𝑖 ≠ 0

etan𝑖 () maps the input to 𝐾 if the input is zero and zero otherwise.
If equipped with multiple diff𝑖 , senders compute separate etan𝑖 ()
for every diff𝑖 in parallel since they are independent. The sender
then simply sums the etan𝑖 into a single ciphertext. The results
obtained by the senders can be additively aggregated by computing∑𝑙−1
𝑖=1 etan𝑖 , whose value is non-zero for an intersection and zero

for a non-intersection. If the senders’ sets are disjoint, the summa-
tion value will be 𝐾 for an intersection; otherwise, it will be some
multiple of 𝐾 . We note that in practical deployments, it is most
probable that some leader sender will take on the additional burden
of aggregation or that different senders will take turns doing this.
In our protocol, a leader sender aggregates the results.

This basic protocol can be implemented with any FHE scheme,
and the aggregation would be composed of efficient homomorphic
additions only. Unfortunately, this version would suffer from high
multiplicative depth when computing the condition “if diff𝑖 = 0.”
This leads to the need to approximate the function 𝑒𝑡𝑎𝑛𝑖 ().

214

Summation-based Private Segmented Membership Test from Threshold-Fully Homomorphic Encryption Proceedings on Privacy Enhancing Technologies 2024(4)

Parameters: 𝑋𝑖 is the input set whose encryptions are provided to sender 𝑖 such that 𝑖 ∈ [1, 𝑙 − 1], 𝑦 is the receiver’s input. 𝜏 is the threshold value,
and 𝜅 is the limit for the random mask. 𝜆 denotes the computational security parameter, and set elements are of bit strings of length 𝛿 . 𝜆, 𝜏 , 𝜅 and 𝛿 are
public parameters. 𝐾 and 𝑆 are public VAF parameters. 𝐿, 𝑅 and 𝑛 are public DEP parameters. 𝑐 is the degree of the polynomial used for Chebyshev.
1. [Parameters]

a. Threshold FHE: Parties, including the receiver, and senders, agree on parameters (𝑁,𝑞, 𝛿, 𝐷, 𝛼) for the thresFHE CKKS scheme.
b. Key Distribution: Parties run a secure multiparty computation protocol ThresFHE.KeyGen that provides each partial key shareholder 𝑖 ∈ [1, 𝛼)

a share of the secret key 𝑠𝑘 as one of {𝑠𝑘1, 𝑠𝑘2, . . . , 𝑠𝑘𝛼 } among the receiver and (𝛼 − 1) senders, and broadcasts the common public key 𝑝𝑘 and
evaluation key 𝑒𝑣𝑘 . Alternatively, a trusted setup can compute the common encryption, partial, and evaluation keys. All the parties, including
data owners, have access to the public encryption key 𝑝𝑘 and evaluation key 𝑒𝑣𝑘 after this step.

2. [Encryption]
a. Encrypt 𝑋 & batch : For all 𝑥 ∈ 𝑋𝑖 , such that 𝑖 ∈ [1, 𝑙 − 1], each sender 𝑖 groups its values 𝑥 into vectors in R𝑚 of length𝑚 with elements in R.

Then, the senders 𝑖 batches each vector into 2 ·𝑚/𝑁 plaintexts and encrypts them using ThresFHE.Enc. As a result, each slot of the resulting
ciphertext contains individual 𝑥 values. Each sender encrypts and batches their sets independently. Alternatively, data owners can execute
ThresFHE.Enc using 𝑝𝑘 and send encrypted sets to their corresponding senders 𝑖 such that 𝑖 ∈ [1, 𝑙 − 1]. Each sender 𝑖 obtains a ciphertext 𝑐𝑥𝑖
after this step. In case |𝑋𝑖 | > 𝜂, the sender can possess multiple ciphertexts encrypting 𝑋𝑖 . Note that FHE batching is applied to either the
receiver’s or sender’s sides, but not both.

b. Encrypt replicas of 𝑦: Receiver constructs a vector of length 𝜂, with each element being 𝑦 ∈ R. Then, the receiver encodes the vector into a
CKKS plaintext and encrypts it ThresFHE.Enc. As a result, each slot of the resulting ciphertext 𝑐𝑦 contains 𝑦.

4. [Compute Intersection]
Senders use ThresFHE.Eval with evaluation key 𝑒𝑣𝑘 to execute the following steps:
a. Homomorphically compute subtractions: Each sender 𝑖 receives the ciphertext 𝑐𝑦 and computes diff𝑖 = 𝑐𝑦 − 𝑐𝑥𝑖 .
b. Apply DEP to reduce the domain size: Each sender 𝑖 iteratively applies the domain extension process 𝑛 times using DEP to shrink the domain

interval of values diff𝑖 from step 4𝑎 into the interval [−𝑅, 𝑅].
c. Homomorphically evaluate VAF: Each sender 𝑖 uses the Chebyshev approximationmethod to approximate etan𝑖 (diff𝑖) = 𝐾 · (1−tanh2 (𝑆 ·diff𝑖))

in the interval [−𝑅, 𝑅] using a degree 𝑐 polynomial.
d. First homomorphic squaring: Each sender 𝑖 homomorphically squares etan𝑖 and obtains etan2𝑗

𝑖
such that 𝑗 ∈ [1, 12]. Higher values of 𝑗 ≥ 2

can be chosen depending on the desired approximation accuracy for larger senders’ set sizes.
e. Scaling & second homomorphic squaring: Each sender 𝑖 multiplies etan2𝑗

𝑖
using a scaling factor, 𝜌 . Step 4𝑑 can be applied again to obtain

(𝜌 · etan2𝑗
𝑖
)2𝑘 with 𝑘 ∈ [3, 4] to exponentially increase the number of parties the protocol can handle and reduce the false positive rates to

negligible or zero.
f. Homomorphically evaluate summation: If a sender possesses multiple ciphertexts, Step 4𝑎 to 4𝑒 is applied to all the remaining ciphertexts

in parallel, and the sender homomorphically summates them to (𝜌 · etan2𝑗
𝑖
)2𝑘 . An aggregator collects (𝜌 · etan2𝑗

𝑖
)2𝑘 from all other senders,

samples a random non-zero plaintext element 𝑟 ∈ [−𝜅,𝜅]; and homomorphically evaluates 𝑧, such that,

𝑧 = 𝑟 +
𝑙−1∑︁
𝑖=1
(𝜌 · etan2𝑗𝑖)2

𝑘

𝑧 is then broadcast to the 𝛼 parties holding the partial decryption keys, including 𝛼 − 1 senders and the receiver.
5. [Partial and Final Decryption]

a. Partial decryption & smudging noise : Upon receiving 𝑧, each partial key-share holder sender 𝑖 ∈ [1, 𝛼) uses their secret key share 𝑠𝑘𝑖 to
partially decrypt 𝑧 using ThresFHE.PartialDec, which introduces a smudging noise 𝑒𝑠𝑚𝑔 to the partial decryptions 𝑝𝑎𝑟𝑡𝑖 . Each sender 𝑖 computes
𝑝𝑎𝑟𝑡𝑖 and sends their decryption share to the receiver.

b. Final decryption: The receiver uses their partial decryption key 𝑠𝑘𝑖 and 𝑧 to execute ThresFHE.PartialDec and obtains their partial decryption
share 𝑝𝑎𝑟𝑡𝑖 . Optionally, the receiver can use a ThresFHE.PartialDec algorithm that does not introduce a smudging noise to increase the precision.
Receiver then combines their share with the partial decryptions received from the 𝛼 − 1 senders, {part𝑖 : sk𝑖 }𝑖∈[0,𝛼) using ThresFHE.Combine
and 𝑝𝑘 and obtains the resulting vector of length 𝜂.

c. Interpretation of result: The receiver checks if the magnitude of any element of the resulting vector exceeds 𝜏 ,

{𝑦 } ∩
𝑙−1⋃
𝑖=1

𝑋𝑖 = {𝑦 : ThresFHE.Combine(z) ≥ 𝜏 }

If any value in a ciphertext slot is greater than the threshold 𝜏 , an intersection exists; otherwise, no intersection exists.

Figure 4: Full PSMT protocol

4.2 Novel Value Annihilating Function (VAF)
One naïve thought is to approximate the function 𝑒𝑡𝑎𝑛𝑖 () with a
polynomial, but doing so would require polynomials with high
degrees. We begin by considering the computation a single sender
must perform. Suppose there exists a small negligible value 𝜖 and
a sender has access to a set 𝑋𝑖 with size 𝑛 such that 𝑥 𝑗 ∈ 𝑋𝑖 for

𝑗 ∈ [𝑛] and is given an FHE ciphertext 𝑐𝑦 encrypting a receiver’s
input 𝑦 ∈ 𝑌 .

Consider the function 𝑓 (𝑦,𝑋𝑖) =
∑𝑛−1
𝑗=0 𝑔(diff𝑗), where diff𝑗 =

(𝑦 − 𝑥 𝑗) and 𝑔(diff𝑗) = 1
diff𝑗+𝜖

. Then, 𝑓 (𝑦,𝑋𝑖) can be thought to

215

Proceedings on Privacy Enhancing Technologies 2024(4) Koirala et al.

exhibit the following behavior similar to that of 𝑒𝑡𝑎𝑛𝑖 :

𝑓 (𝑦,𝑋𝑖) =
{
1/𝜖 +∑𝑛−1𝑗=1 𝑔(diff𝑗), if diff0 = 0∑𝑛−1
𝑗=0 𝑔(diff𝑗) ≪ 𝐾, if diff𝑗 ≠ 0

Here, if diff0 = 0 (i.e., 𝑦 ∈ 𝑋𝑖) and 𝜖 → 0, 𝑓 (𝑦,𝑋𝑖) increases
without bound and its limit approaches infinity. This misuses the
notion of infinity in terms of computation, as infinity is not a nu-
merical quantity. Nevertheless, it leads us to some intuition on how
to construct a protocol that is amenable to PSMT: we should have a
function that each sender computes that outputs very large values
(close to 𝐾) to annihilate the summation on an intersection but
outputs a negligible summation value compared to 𝐾 on a non-
intersection. Then, additively summing these results from each
sender would yield a result indicating if the receiver’s element 𝑦
is in

⋃𝑙−1
𝑖=1 𝑋𝑖 , i.e., the large value indicates intersections and small

negligible values indicate non-intersections.
To realize this idea, we consider a candidate function𝐷𝐸𝑥𝑎𝑐𝑡

𝐾
(𝑥) :

R→ R that exhibits the useful properties described above without
the problematic behavior of a potential division by zero:

𝐷𝐸𝑥𝑎𝑐𝑡
𝐾

(𝑥) =
{
𝐾, if 𝑥 = 0
0, if 𝑥 ≠ 0

. This function 𝐷𝐸𝑥𝑎𝑐𝑡
𝐾

() easily satisfies

these constraints and has the exact same behavior as etan𝑖 (). We call
such functions Value Annihilating Functions (VAF). A VAFmaps zero
to 𝐾 and all others to zero. Computing VAFs homomorphically is
challenging because if conditions cannot be evaluated efficiently in
FHE. We thus consider another function approximating 𝐷𝐸𝑥𝑎𝑐𝑡

𝐾
(𝑥).

Instantiating a VAF on finite fields with exact schemes would re-
quire a very large plaintext domain for representing inputs, and
the approximation procedure would be very inefficient. Hence, for
such a function, approximate-arithmetic FHE is preferable.

It is challenging to find a function that accurately approximates
such kind of behavior. The functions approximating such kind of
behavior require computing the inverse or the division operation,
and computing such an operation homomorphically is fundamen-
tally challenging. Similarly, trying to control the maxima of such
functions while approximation results in very bad accuracies. We
explored many candidates for VAFs, such as rational functions in-
cluding 𝑓𝐾,𝑆 (𝑥) = 𝐾

(1+𝑆 ·𝑥)4 , sigmoid, hyperbolic tangent, piecewise
linear, sign function, among others. The rational functions require
computing a division for VAF, which is inefficient for FHE. Sigmoid,
hyperbolic tangent, piecewise linear, and sign functions either did
not exhibit the kind of properties that we needed or resulted in
a very high accuracy loss while approximating in FHE. With all
the considerations, we discovered the following function exhibits
satisfactory behavior for our purpose with minimal accuracy loss:

𝐷
𝐴𝑝𝑝𝑟𝑜𝑥

𝐾,𝑆
(𝑥) = 𝐾 · (1 − tanh2 (𝑆 · (𝑥)))

This function is shown in Figure 5, approximating a VAF. Since
piece-wise functions cannot be evaluated efficiently in FHE due to
branching, we designed a function that gets larger quickly as the
input gets closer to zero. The derivative of the hyperbolic tangent
(1 − tanh2 (𝑥)) has maxima as one for zero inputs and approaches
zero for inputs in the range (−∞,−3) ∪ (3,∞). We set 𝐾 acts as the
maxima and use 𝑆 to increase the input range for zero (i.e., width of
the function’s hump near the zero) such that the function outputs
zero for inputs in range (−∞,−1) ∪ (1,∞). Using this function for

–1–1–1 –0.5–0.5–0.5 0.50.50.5 111

111

000

1

0-0.5-1 0.5 1

Figure 5: Graph of the VAF 𝐾 · (1 − tanh2 (𝑆 · 𝑥)) : 𝐾 = 1.5, 𝑆 = 10.

approximation, senders acquire a summation value that is equal
to 𝐾 when an intersection is detected; otherwise, they obtain a
summation value that is close to zero.

When computing functions such as 𝐷𝐴𝑝𝑝𝑟𝑜𝑥
𝐾,𝑆

(𝑥) in approximate
homomorphic encryption, only additions and multiplications are
available. However, such approximations are not zero-valued for
all nonzero arguments or even all arguments outside some interval
centered at zero. In the following sections, we describe how we
compute a polynomial approximation𝐷𝐴𝑝𝑝𝑟𝑜𝑥

𝐾,𝑆
(𝑥) whose values on

R except for a small interval near zero can be bounded by some small
number𝜅 . Then, we can set parameters𝐾, 𝑆, 𝜅, 𝜈 such that (𝑙−1)·𝜅 <

𝜏 , where 𝜏 = 𝜈 · 𝐾 . 𝜈 ∈ (0, 1] is a threshold proportion used to
account for the case where error from approximate-arithmetic FHE
may cause a sum of 𝑙 outputs of 𝐷𝐴𝑝𝑝𝑟𝑜𝑥

𝐾,𝑆
(𝑥) on nonzero arguments

to be greater than (𝑙 − 1) · 𝜅.

4.3 Polynomial Approximation of VAF
The approximation of complex non-polynomial functions is a well-
studied topic. Existing works such as [29, 30] use polynomial com-
position with iterative algorithms to approximate functions like
min/max and comparison using FHE. Other works have used tech-
niques like Taylor series [12, 65], minimax approximation [27, 100],
look-up tables [39] and conversion between FHE schemes [9, 33].

A major challenge for approximation techniques is finding poly-
nomial approximations that work on large domains. Existing ap-
proaches for approximation [12, 28, 63, 65] struggle for large do-
main intervals, inducing very high approximation errors. Even
domains of thousands can be challenging [31, 63]. This would re-
quire homomorphically evaluating polynomials of an extremely
large degree. For instance, simply using Chebyshev-based approxi-
mation for approximating non-linear functions for domains such
as [−1000, 1000], requires almost 20.5 minutes of computation time
and an additional 12 multiplicative depth for acceptable accuracy.
Hence, the error induced by the approximation and the compu-
tational cost of approximation are the major factors [31] to be
considered during the approximation. For our application, we are
primarily concerned with the computational cost of the evaluation
and require low precision that will enable us to distinguish values
converging to 𝐾 (for intersection) and 0 (for non-intersection).
Domain Extension Polynomials (DEPs). DEPs enable the effec-
tive shrinking of a large domain interval [−𝐿𝑛𝑅, 𝐿𝑛𝑅] to a smaller
subinterval [−𝑅, 𝑅] such that the property of the VAFs around zero
in the smaller domain is preserved. To compress inputs from an in-
terval [−𝐿𝑛𝑅, 𝐿𝑛𝑅] to an interval [−𝑅, 𝑅], we can iteratively apply
a DEP with 𝑂 (𝑛) operations and 2𝑛 additional depth. Using this
method we can convert inputs 𝑧 ∈ [−𝐿𝑛𝑅, 𝐿𝑛𝑅] into values 𝐷 (𝑧)
such that 𝑧 ∈ [−𝑅, 𝑅] =⇒ 𝐷 (𝑧) ≈ 𝑧 and 𝑧 ∉ [−𝑅, 𝑅] =⇒ 𝐷 (𝑧) ≈

216

Summation-based Private Segmented Membership Test from Threshold-Fully Homomorphic Encryption Proceedings on Privacy Enhancing Technologies 2024(4)

𝑠𝑖𝑔𝑛(𝑧). Specifically, we utilize Algorithm 1 from [31]. To handle
inputs in [−𝑅, 𝑅] using the DEP 𝐵(𝑧) = 𝑧 − 4

27𝑧
3 at an iteration 𝑛 of

Algorithm 1, we divide inputs to 𝐵(𝑧) by 𝐿𝑛𝑅, and scale its ouputs
by 𝐿𝑛𝑅. This converts 𝐵(𝑧) from a DEP on [−1, 1] to a DEP on
[−𝑅, 𝑅]. If the accuracy of 𝐵(𝑧) is not good enough, then squaring
its outputs can make 𝐵(0) larger and 𝐵(𝑧) for 𝑧 ≠ 0 smaller, at the
cost of additional depth and runtime. DEPs enable the approxima-
tion of values within a large domain interval, allowing the protocol
to handle potentially millions of inputs efficiently.
Chebyshev Approximation. Chebyshev polynomial approxima-
tion are minimax-based polynomial approximation method that
achieves the smallest possible polynomial degree with minimal
approximation errors [31, 63]. Approximating functions using stan-
dard approximation techniques like Taylor series can induce the
Runge phenomenon [13] that causes an approximation to yield
poor accuracy at the edges of the interval. Chebyshev polynomials
reduce this phenomenon and provide an approximation that is close
to the best polynomial approximation to a continuous function.

We apply DEPs and Chebyshev approximation to approximate a
𝐷
𝐴𝑝𝑝𝑟𝑜𝑥

𝐾,𝑆
(𝑥) in amuch smaller interval [−𝑅, 𝑅] while preserving the

original larger domain [−𝐿𝑛𝑅, 𝐿𝑛𝑅] with low FHE multiplicative
depth. This leads our protocol to approximate etan𝑖 () with low
approximation errors and computational cost for a large domain.

4.4 Security
Using our basic protocol in Figure 3, the receiver can learn the
aggregation value

∑𝑙−1
𝑖=1 etan𝑖 to infer information about the differ-

ence between their query and the sender’s value to get information
about the non-intersection values. To fix this issue, we require the
senders to obscure the aggregation value by adding a small ran-
dom masking term 𝑟 ∈ [−𝜅, 𝜅], where 𝜅 is a public bound for the
approximation value of VAF on a non-intersection.

Our protocol incorporates a threshold version of the CKKS
scheme to withstand collusion among up to 𝛼 parties where 𝛼 < 𝑙/2.
This ensures that even if the receiver acts as an adversary, they
cannot derive any additional information from the communication
channels, as decryption is unachievable with only their single par-
tial key. Consequently, the receiver would need to collude with
𝛼 −1 parties to gain any extra information. Semantic security of our
PSMT protocol follows directly from the security of the underlying
threshold variant of the FHE scheme CKKS [28]. Recent works
by Cheon et al. [24] and Li and Micciancio [74] have shown that
IND-CPA security is not sufficient for both exact (BGV, BFV, and
TFHE) and approximate (CKKS) FHE schemes. In particular, [74]
presented a passive attack against CKKS and showed that CKKS
is not secure if access to a decryption oracle is provided. They in-
troduced a new notion of privacy called IND-CPA𝐷 that provides
access to encryption, evaluation, and decryption oracles. More-
over, the access to decryption oracle requirement is also present in
thresFHE schemes for accessing the partial decryptions, and thus
the threshold variants of all FHE schemes, including CKKS in our
basic protocol, are exposed to IND-CPA𝐷 attackers [18, 67].
Handling IND-CPA𝐷 capable adversaries. In CKKS, the noise
component is a part of the message, and this results in the linearity
of the decryption function to the secret key revealing the decryption
noise, and making it vulnerable to IND-CPA𝐷 attackers [25]. To

mitigate this kind of attack, existing works [18, 25, 41, 74], have
proposed various countermeasures such as bootstrapping to reset
the noise variance to a preset value, using the rounding procedure
or attaching a proper noise at the end of the decryption process
called smudging noise to avoid the linearity on the secret key. We
employ the noise smudging (noise flooding) method to transform
the thresFHE CKKS scheme achieving the weak IND-CPA security
definition into one which is IND-CPA𝐷 secure [75].

Before adding the noise, proper estimation needs to be done
for noise addition using either static or dynamic noise estimation
[4, 75]. In our application, we use static noise estimation since it can
be performed offline to compute the noise using publicly available
bounds on the inputs and the function to be evaluated. Senders
estimate the noise using a fresh secret key-public key pair and select
messages reflecting actual data for the homomorphic computation.
The additional noise is drawn from 𝐷𝑅,𝜎 over the polynomial ring,
represented in its coefficient form where 𝜎 is a standard deviation
set by a security level and noise estimate. Thus, to achieve 𝑠 > 0
bits of statistical security, one can set 𝜎 =

√
24𝑎 · 𝑁 · 2𝑠/2 (see

Corollary 2 in [75]), where 𝑎 is the number of adversarial queries
the application is expecting, and 𝑁 is the ring dimension used
for FHE. We add smudging noise using this distribution to ensure
IND-CPA𝐷 security for our underlying thresFHE CKKS scheme.

4.5 Choosing Appropriate Parameters
Over the course of our experiments, we encountered several chal-
lenges in determining suitable parameters for the DEP and Cheby-
shev approximation and tailoring them to the specific sender set
sizes. To set up the DEP parameters for reducing the Chebyshev
approximation degree, one needs to be careful while choosing 𝐿, 𝑅,
and 𝑛 with 𝑐 to minimize FHE depth and approximation errors for
a given |X|. We provide further details regarding parameterization
and list our findings in Appendix A and Table 5.

We note that the values described in this section and in Table 5
are useful for the case where

⋂𝑙−1
𝑖=1 𝑋𝑖 = ∅, i.e., each sender’s set

has no element in common with other sender sets. In case senders’
sets are not disjoint, we can allow up to Ψ of 𝑙 senders to have a
duplicate element, so long as values up to Ψ · 𝐾 can be represented
correctly in CKKS with the parameterization being used. To ensure
that the summation does not overflow, we can set a smaller 𝐾 and
heuristically choose smaller values for parameters 𝑗 , 𝑘 , 𝜌 , and 𝜏 .
Note that in case, we allow duplicate items, our protocol will require
higher precision bits to accommodate for the precision loss.
Smudging Noise. In our protocol, we require the senders to add a
smudging noise to their partial decryptions from 𝜎 =

√
24𝑎 · 𝑁 ·2𝑠/2

that has a larger variance than the standard noise distribution
of basic thresFHE CKKS. We set 𝑎 = 210 and 𝑠 = 36, limiting
the adversary’s success rate to 2−36 (about 1 in 68 billion) for 210
adversarial queries for a single ciphertext. Li and Micciancio offer
noise-estimation parameters for 𝑎 < 215 only (see Table 1 in [75])
and having higher values of 𝑎without adding larger smudging noise
or significant precision loss is a problem orthogonal to ours and a
topic under research [18, 38, 75]. Hence, we assume that distributed
thresFHE queries for identical or related ciphertexts are limited to
fewer than 210 in our application since all parties will need to be
involved in every thresFHE decryption. One solution to mitigate
such an issue would be refreshing the noise estimate after every 210

217

Proceedings on Privacy Enhancing Technologies 2024(4) Koirala et al.

queries which would add minimal overhead to the latency as it can
be done offline. Similarly, another mitigation as suggested by [75],
would be updating the secret key shares occasionally, however, this
method will require extra rounds of communication.

After running the noise estimation, we estimated roughly 34
noise bits for smudging. This smudging noise ensures the IND-CPA𝐷
security; however, it introduces noise with a high variance to each
partial decryption. Moreover, the noise amplifies when aggregated
across numerous parties, leading to a substantial loss in precision
due to which non-intersection summation 𝑧 =

∑𝑙−1
𝑖=1 etan𝑖 can over-

flow beyond negligible values. However, this is not an issue in our
protocol since we can simply choose a higher 𝜏 value to accom-
modate for the precision loss. Moreover, the noise smudging is
performed independently by the senders, which incurs very low
latency and, thus, does not significantly affect the protocol’s latency.

4.6 Asymptotic Complexity Analysis
Each sender must compute the procedures described in Figure 4.
This requires 2𝑛 +𝑂 (𝑙𝑜𝑔(𝑐)) + 𝑗 + 𝑘 homomorphic multiplications.
These procedures require a multiplicative depth of 2𝑛 for the ap-
plication of the DEP, approximately 𝑙𝑜𝑔(𝑐) + 1 for Chebyshev ap-
proximation, and 𝑗 + 𝑘 for repeated squaring. The precise amount
of depth recommended for a polynomial approximation of degree 𝑐
is chosen heuristically1. CKKS operations besides multiplication,
e.g., addition and scaling, contribute relatively small amounts of
overhead and noise. The additive aggregation of each sender’s re-
sult is relatively inexpensive; most notably, it does not increase
multiplicative depth even with an increasing number of senders.

Our protocol requires sending one ciphertext from the receiver
to the 𝑙 − 1 senders and receiving 𝛼 − 1 ciphertexts from the senders
by the receiver. Thus, the communication between the receiver and
senders is bounded above by 𝑙 + 𝛼 − 2 ciphertexts. The inter-sender
communication is bounded by (𝑙 − 1) ·𝛼 ciphertexts which includes
the final result ciphertext sent to the receiver by the aggregator.
The number of communication rounds between the receiver and
senders is four in our protocol, assuming a trusted setup provides
all the parties their respective keys. In case a separate secure multi-
party protocol is run for the key generation during the setup phase,
it will add two more rounds to the overall communication.

4.7 Discussion
4.7.1 Set Updates. As we do not require any preprocessing of
senders’ sets, updates to the encrypted senders’ sets are trivial in
our protocol. Most computations in our protocol take place during
the online phase of the protocol. This allows the protocol to easily
add or delete any element in senders’ sets, as no pre-processing
is necessary during the offline phase. The data owners can simply
update their sets, encrypt them, and send the corresponding cipher-
text(s). Alternatively, data owners can only send the latest set of
elements separately, which will save communication costs. Senders
can then use all received ciphertexts to compute the PSMT for new
queries. This will allow the parties to compute the intersection of
their private sets on a regular basis with sets that are often updated.

1Some guidelines for choosing parameters for polynomial approximation can be found
at https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/
FUNCTION_EVALUATION.md

4.7.2 Multiple Receivers. In case we have multiple receivers, each
receiver must participate in the setup phase of key generation
to obtain a partial decryption key. The threshold value 𝛼 can be
adjusted to accommodate the increased number of receivers. For 𝑟
number of receivers, the threshold can be adjusted to (𝛼 − 𝑟) which
will ensure that only the querying receiver needs to supply partial
decryption to complete the decryption process. However, with
multiple receivers, it’s crucial they do not collude, as each holds a
partial decryption key, and collusion can lead to fewer than (𝛼 − 𝑟)
senders being required for decryption, as malicious receivers could
get access to the final result by monitoring the communications
channels. In scenarios where a new receiver wants to perform the
query, we can update the secret key shares in thresFHE by updating
the original polynomial used for setting up secret sharing.

4.7.3 Attacks on CKKS in OpenFHE. For our experiments, we uti-
lize an open-source FHE library called OpenFHE [1]. OpenFHE uses
non-worst-case noise estimation during static noise estimation to
provide better efficiency [38, 40, 44, 87], and multiplies the noise
internally to ensure enough noise bits suggested in [75]. Recently,
Guo et al. [54] show that relying on non-worst-case noise esti-
mation undermines noise-flooding countermeasures for achieving
IND-CPA𝐷 and implement a key-recovery attack on OpenFHE. In
their attack, the adversary has the freedom to select a different eval-
uation function for noise estimation; however, in our application,
the senders are semi-honest, who run the noise estimation, and add
the correct amount of noise using worst-case noise estimation using
[Table 1, [75]]. Hence, this attack does not apply to our protocol.
Alexandru et al. [4] have also pointed out that these attacks are
the result of misusing the OpenFHE library by employing different
(incompatible) circuits during noise estimation.

4.7.4 Tradeoffs. The process of applying a DEP followed by Cheby-
shev approximation requires significant depth, but this depth does
not depend on the number of senders involved. Each sender can
perform this computation in parallel, but this step may be expensive.
Thus, even though we require a higher computational complexity
compared to other methods for a small number of senders, this
complexity does not depend on the number of senders and stays
moderately low for a significantly higher number of senders. The
protocol’s computation and FHE multiplicative depth only depend
on the size of the sender’s set and not the number of senders.We also
note that FHE batching can only be applied to either the receiver or
senders, but not both. Applying batching to the receiver’s elements
will require using hashing techniques (e.g., cuckoo hashing), which
will eventually require pre-processing of the elements.

5 CHALLENGES
5.1 Increasing Throughput
Using our PSMT protocol, senders encode each of its sets’ elements
into separate plaintexts and individually compute the polynomial
approximation. A single query can take time on the order of sec-
onds, highlighting the need for better throughput. The throughput
of our PSMT protocol can be improved using the SIMD feature
available in FHE schemes. The CKKS scheme supports the packing
of multiple message vectors into a single ciphertext where the slots

218

https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/FUNCTION_EVALUATION.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/FUNCTION_EVALUATION.md

Summation-based Private Segmented Membership Test from Threshold-Fully Homomorphic Encryption Proceedings on Privacy Enhancing Technologies 2024(4)

of the ciphertexts hold different values. This allows slot-wise ad-
dition and multiplication [15, 49, 51, 101]. The CKKS scheme can
encrypt 𝜂 = 𝑁 /2 elements in R into a single ciphertext using this
mapping. The batching technique allows the sender to operate on
𝜂 items simultaneously, resulting in 𝜂-fold improvement in both
the computation and communication. To enable batching when not
all slots are used, we fill the remaining slots with a dummy value.

5.2 Supporting Larger Sets
Increasing the capacity of the protocol to support large senders’
sets requires the use of larger plaintext spaces. In prior work on
FHE-based PSI [20, 22, 37], the sender partitions their elements into
disjoint sets and computes the intersection of receiver elements
with each partition. This can reduce the effective set size in each
computation, but partitioning increases the number of results to be
sent back. Although the results can be multiplicatively aggregated,
it requires more depth. An advantage of our design is that we
gain the ability to partition computations and thereafter aggregate
results from the partitions nearly for free.

Our protocol can be extended to use very large sender sets. How-
ever, we note that it will require more depth and computing power
due to the large FHE parameters required for the DEP procedure
and Chebyshev approximation. Since our final result is the summa-
tion of individual results from the senders, increasing the senders’
set sizes does not dramatically increase the communication size.

5.3 Reducing False Positives
In the existing works, false positives occur due to hashing collisions
[22] or representation of the set elements using some probabilistic
encoding techniques like bloom filter encoding [99]. In our protocol,
false positives can occur due to bad approximation accuracy of
the VAF. After applying the DEP procedure, we found that the
homomorphic approximation for the VAF was not accurate enough
within the range [−3, 3]. While the approximation would correctly
map zero values to 𝐾 , the non-zero values in the range [−3, 3]
would be mapped to values far too close to 𝐾 . Hence, instead of
producing a hump at 0, we observed that the approximation would
produce a flatter curve. These values would later contaminate the
summation outcome, leading to false positives. To solve this issue,
we used a technique involving homomorphic squaring and scaling.
Homomorphically squaring the values in the range (−1, 1) would
map them to smaller and smaller values. Then, we would scale them
by a scaling factor 𝜌 ∈ (2, 2.8) so they remain within (−1, 1). Finally,
we apply homomorphic squaring again, which would square 𝜌 for
intersection and augment the difference between values mapped to
zero and non-zero. After using the aforementioned techniques, 𝜅
is the highest value approximated by the Chebyshev (see Table 5)
when diff𝑖 is at its minimum value of one.

Our complete protocol after incorporating the aforementioned
solutions is detailed in Figure 4.

6 EVALUATION
We implemented our proposed PSMT protocol using C++17 and
OpenFHE v1.0.3 [1]. The anonymized source code is available at
https://anonymous.4open.science/r/psmt-7777. We used the thresh-
old variant of CKKS scheme [28] and employed the default FHE

parameters provided in OpenFHE using [2] and the noise smudging
parameters provided in [75] to ensure a (128, 36)-bit computational
and statistical security. To be able to support a higher amount of
noise bits during noise smudging, we recompiled OpenFHE with
NATIVE_SIZE = 128 flag. Our experiments were run on a server
with anAMDEPYC 7313P processor and 128GB ofmemory, running
Ubuntu 20.04. In our LAN setup, we assumed a 10 Gbps bandwidth
and 0.2ms round trip time (RTT) latency, while our WAN assumed
200 Mbps and 1 Gbps bandwidths with an 80ms RTT latency.

We evaluate the performance in terms of computational and
communication costs. For computational latency, we evaluate per-
sender query runtime and the runtime for aggregating results from
multiple senders by performing 5 runs for each combination of
parameters and taking the average. The bit-length 𝛿 of the set ele-
ments is matched to the plaintext space accommodated by the DEP
and Chebyshev parameters. The senders’ individual computations
are independent in our protocol. We assume that after receiving
the query ciphertext from the receiver, each sender operates on
their own set in parallel. We choose the number of senders for
every senders’ set size from 27 to 225 such that each sender has to
evaluate a single ciphertext, i.e., a single sender possesses at most
𝜂 elements. In case we have fewer senders for a given |X|, which
results in a single sender possessing more than 𝜂 elements, we
assume that senders pack their set elements in multiple ciphertexts
and evaluate them parallelly and homomorphically summates them
to a single ciphertext. To obtain the noise for noise smudging, we
assume senders perform static noise estimation offline using the
publicly available input bounds reflecting actual data and the VAF
function to be evaluated. This is a one-time estimation process that
solely depends on the query computation time and induces negligi-
ble latency while considering PSMT for a large number of senders.
To better understand the scalability of our protocol, we evaluate it
on the range of the number parties 𝑙 = 2𝑛 where 𝑛 ∈ [2, 12].

Baselines.Many variants of PSI, MPSI, and PMT protocols are
designed to handle specific or more general scenarios. Selecting
a specific protocol for comparison with our work is a complex
task, given our novel privacy model with server-side encryption,
provenance privacy, and a high number of senders. Considering
the existing works that we discussed in Section 2, [70], [6], [97],
[94] and [17] either lack scalability for a large number of senders,
do not provide a public implementation or do not support multiple
senders. ORAM-based approaches such as [104] simply do not
support a higher number of senders for comparison with our work.
[22] is an older work and serves as the foundation for [20] and
[37]. Thus, we primarily compare our protocol to the following
state-of-the-art baseline FHE-based and non-FHE-based PSI and
MPSI protocols: Cong et al., [37], Bay et al. [7] and Nevo et al. [84].
Cong et al.’s protocol uses the BFV FHE scheme [46] and for a
fair comparison, we implemented their protocol for a multiparty
setting using a threshold variant of BFV in OpenFHE by using their
public implementation [79], originally implemented in SEAL [21].
We used the default noise-flooding mechanism in OpenFHE for
BFV to ensure IND-CPA𝐷 in the threshold setting. Similarly, for
non-FHE-based protocols we ran the public implementations (both
in C++) of the MPSI protocols of Bay et al. [7], which is one of
the fastest-known MPSI protocols for smaller set sizes and a large

219

https://anonymous.4open.science/r/psmt-7777

Proceedings on Privacy Enhancing Technologies 2024(4) Koirala et al.

* Nevo et al. do not support more than 32 parties

Figure 6: Runtime comparison for Bay et al. [7] and Nevo et al. [84] with ours and Cong et al. [37] (middle, zoomed-left). Total computation
time comparison for Cong et al. [37] vs. our protocol for 𝑙 < 4096 and 𝛼 ∈ { 𝑙8 ,

𝑙
4 ,

𝑙
2 }; senders’ set size is set to 215 (right).

number of parties and Nevo et al. [84], which is one of the most
scalable maliciously secure MPSI protocol based on OPPRF and
OKVS on our server for performance comparison.

Table 3 shows the overall communication overhead and computa-
tion time, which is the total time required to complete the DEP and
Chebyshev approximation using the parameters in Table 5. Observe
that the size of messages from the receiver to senders increases with
senders’ set sizes due to larger senders’ set size requiring query
ciphertexts, which should be able to tolerate a higher amount of
noise and, hence, higher FHE depth for the DEP and Chebyshev.
The inter-sender communication is largely determined by the size
of ciphertexts sent by senders to the leader after query computation.
The leader sender has to then send back𝛼 aggregated ciphertexts for
partial decryption. Since the aggregated ciphertext’s size is signifi-
cantly smaller, the communication is not affected much by higher
values of 𝛼 in our protocol (Figure 6, right). Finally, the message
size from the senders to the receiver depends on 𝛼 , and it remains
very low as it only contains the summation result ciphertext.

For various settings of |X|, we set the highest number of parties
to 1024 (modest for most applications discussed in Section 1) and
examine the aggregation latency and communication overhead.
Most related state-of-the-art works are only evaluated for a small
number of senders (usually 100 or less) [7, 8, 70]. The aggregation
time (not counting encryption and partial/final decryption) of our
protocol stays within 100 seconds for |X| ≤ 225, and our protocol
can be easily extended for a higher number of senders (up to 4096
in Figures 6 and 8). Moreover, the corruption threshold 𝛼 does not
significantly affect the computational or communication overhead.
For the applications discussed in Section 1, we can observe that our
protocol can handle the increasing number of parties very efficiently.
The parties do not need to store any auxiliary data for computing
PSMT. Moreover, parties in these applications (e.g., government
agencies, banks, insurance companies) are often equipped with
high bandwidth networks and connected through LANs, which
helps minimize the communication latency in our protocol. We
note that we only report computational latency for only up to 4096
parties, but this is only due to memory constraints when running
the protocol with a huge number of senders in a single system.

Comparison with FHE-based protocol. We compare the com-
putational latency of our protocol and Cong et al.’s protocol [37] in
the multi-party setting in Figures 6 to 8. For the number of senders
less than about 320, [37] is faster than our protocol, but for higher
number of senders, our protocol outperforms [37]. As the number of
senders increases, aggregation time for [37] becomes the bottleneck
due to multiplicative aggregation. The query computation time for

Table 3: Communication and computation overhead in our protocol.
Agg. denotes the total time required to aggregate the ciphertexts.
R-to-S, S-to-S, and S-to-R denotes receiver to sender, inter-sender,
and sender to receiver, respectively. Query refers to the query com-
putation time for each sender.

|X | Message size (MB) No. of Agg. Query DepthR-to-S S-to-S S-to-R Senders (second) (second)
27 45 49.1 2.1 128 6.53 13.20 21
28 49 53.1 2.1 256 14.12 15.24 23
210 63 67.1 2.1 1024 40.29 19.09 30
213 79 83.1 2.1 1024 67.51 26.00 38
215 87 91.1 2.1 1024 71.16 30.07 42
220 107 111.1 2.1 1024 87.78 59.67 52
221 111 115.1 2.1 1024 103.98 64.65 54
222 115 119.1 2.1 1024 84.63 68.90 56
223 119 123.1 2.1 1024 90.34 75.80 58
224 123 127.1 2.1 1024 84.09 81.08 60
225 127 131.1 2.1 1024 92.53 86.76 62

Figure 7: Computation time comparison for Cong et al. [37] vs ours
for different senders’ set size. Number of senders is set to 1024.
**Bay et al. and Nevo et al.were omitted due to inefficiency for larger
set sizes and a high number of senders, respectively.

our protocol is slower than [37]. Similarly, partial decryption time
and ciphertext combining time are also slower for our protocol, as
these operations are inherently slower in CKKS compared to BFV.
However, our protocol is almost 3.3− 5.6× faster for various values
of 𝛼 in Figure 6 (right), and |X| in Figure 7 when the aggregation
time is also taken into account for the overall latency. We observe
this speedup due to our summation based approach for aggregation.
Moreover, continuing to increase the number of senders results in
an even greater computational latency benefit.

In terms of communication size, [37] has an advantage over our
protocol since it uses smaller FHE parameters while query com-
putations as they operate on unencrypted datasets (Table 4). We,
however, process fully encrypted datasets and provide security
against the senders that necessitate the use of non-scaler homo-
morphic operations requiring relatively larger FHE parameters.

220

Summation-based Private Segmented Membership Test from Threshold-Fully Homomorphic Encryption Proceedings on Privacy Enhancing Technologies 2024(4)

Table 4: Communication cost for our protocol compared to Cong
et al. [37] and Nevo et al. [84] for up to 𝑙 = 15, 𝛼 = 𝑙 − 1 and 220
senders’ set size. "Total Comm. size" refers to the communication
size of sent/received data between all parties[1,2] .
**Bay et al. [7] omitted as they lack an implementation level com-
munication analysis and cannot handle 220 senders’ set size.
Params. Total Comm. size Comm. time (seconds)

𝑙 𝛼 [37] [84] Ours 10 Gbps 1 Gbps 200 Mbps
[37] [84] Ours [37] [84] Ours [37] [84] Ours

4 1 180.1 201.3 759.3 0.5 0.2 0.6 1.8 1.6 6.1 7.5 9.0 30.7
3 195.5 2225.6 771.7 0.5 1.8 0.6 1.9 17.8 6.2 8.1 89.3 31.2

10
1 497.2 453.0 2043.3 0.7 0.4 1.6 4.3 3.6 16.3 20.2 18.4 82.1
4 515.8 1054.6 2061.9 0.7 0.8 1.7 4.5 8.4 16.5 21.1 42.5 82.8
9 546.8 5563.9 2082.9 0.8 4.5 1.7 4.7 44.5 16.7 22.2 222.9 84.0

15

1 742.7 662.7 3113.3 0.9 0.5 2.5 6.3 5.3 24.9 30.0 26.8 124.9
4 761.3 1254.6 3131.9 0.9 1.0 2.5 6.4 10.0 25.1 30.8 50.5 125.6
7 779.9 1416.9 3150.5 1.0 1.1 2.5 6.6 11.3 25.2 31.5 57.0 126.3
14 823.3 8345.9 3193.6 1.0 6.7 2.6 6.9 66.8 25.6 33.3 334.2 128.1

1 [37] and [84] do not provide security of datasets against the senders.
2 [84] do not support sender side encryption. Implementing sender side encrypt-
ion in [37] results in impractical runtimes (multiple hours or days) due to huge
overheads for optimization operations and intersection polynomial generation
for interpolation in the homomorphic domain.

Moreover, our communication cost scales much better when deal-
ing with a high number of senders, as depicted in Figure 8. Our
communication is mainly dependent on |X| and grows slowly with
the increasing number of senders. Considering 𝑙 ∈ [29, 213] and
high bandwidth network environments (around 1Gbps or more),
our total runtime latency is up to 5.6× better than [37].

Comparison with non-FHE-based protocols. For non-FHE-
based protocols, multiplicative depth is not a significant issue, but
most of these protocols have high communication and no post-
quantum security. These protocols either support a large senders’
set size or a large number of senders but not both. We compared
both our work and [37] to Bay et al. [7] and Nevo et al. [84] in the
MPSI setting with 𝛼 = 𝑙

2 collusion threshold.
In terms of communication, [7] require five rounds while ours

and [84] need four. [7] only provide a theoretical level communica-
tional analysis, lacking an implementation level evaluation, thus,
for communication we only compare ours with [37] and [84]. The-
oretically, clients in [7] send encrypted bloom filters comprising𝑚
ciphertexts, where𝑚 is determined by the number of hash func-
tions ℎ and the dataset size 𝑛. In experiments, [7] set ℎ = 7 and
𝑚 = ⌊ 7𝑛

log2 ⌋ bits to achieve a 1% false positive rate, while our method
maintains a negligible false positive rate. For sensitive applications
requiring a much lower false positive rate, [7] must use higher𝑚
and ℎ, which will incur significantly larger overheads.

[7, 37, 84] access the senders’ set elements in plain for encoding
while we operate on encrypted sets. In [7], senders can have dupli-
cate elements among each other, but in ours, we assume that all
senders have distinct elements. Senders’ set size is set to 27 for [7],
but for the number of parties higher than 128, 256, and 512, we set
the senders’ set size to 28, 29, and 210 for us and [37], [84] respec-
tively even though it favors [7]. We report the runtime comparison
using these settings in Figure 6 (middle, left-zoomed).

[84] are extremely fast as they employ very efficient OPPRF and
OKVS-based primitives; however, they can only handle up to 32
parties. For applications involving a limited number of parties and
malicious security, [84] is preferable. [37] and [7] are better for
applications having less than around 300 parties but [7] are limited
in set size. Our protocol scales much better and is up to 1.5× and
2.4× faster than [7] and [37] for up to 210 senders. Hence, ours is

* Nevo et al. do not support more than 32 parties

Figure 8: Total runtime comparison for Cong et al. [37] and Nevo et
al. [84] with ours. Senders’ set size is set to 215 and 𝛼 = 𝑙

2 .
**Bay et al. omitted as they do not support 215 set size.

preferable for applications with a very high number of parties that
require security against the senders.

Communication and total runtime. We compare our protocol
to [84] and [37] in Table 4 for communication size. We limit 𝑙 = 15
as [84] only provide communication analysis for up to 15 parties in
[[84], Table 4]. Our protocol outperforms [84] when the collusion
level reaches 𝛼 = 𝑙 − 1, though [84] excels at lower 𝛼 values. [37]
surpasses both our method and [84] in terms of communication
only. In Figure 8, we show the total runtime latency of our protocol
compared to [37] and [84]. Even though [37] and [84] have lower la-
tencies for a smaller number of parties (due to unencrypted senders’
sets), ours is up to 2.4× faster for a higher number of parties as we
rely on summation-based aggregation.

Comparison with other works. [70] is close to our work in
the MPSI setting; however, it scales poorly for a large number of
parties, taking almost 300 seconds of computation time for 15 par-
ties. [8] provide a maliciously secure MPSI based on garbled bloom
filters and k-out-of-N OT. [8] and [70] both has been compared
against [84] hence we do not compare against [8] and [70]. [23]
employ a multi-query reverse private membership test protocol,
but their implementation is not compatible with multiple parties.
[112] achieve maliciously secure MPSI using bloom filters for large
inputs; however, they lack a public implementation for comparison.

7 CONCLUSION
In this work, we introduce the concept of a Private Segmented
Membership Test (PSMT) for cases where users wish to query a set
held segmented among many data holders while ensuring prove-
nance privacy. We show a basic protocol to solve PSMT based on
approximate-arithmetic threshold FHE and provide details about
overcoming various technical challenges to make our solution feasi-
ble. We further guarantee IND-CPA𝐷 security for threshold CKKS
using noise-smudging techniques. Our experiment shows the scal-
ability of our protocol that aggregates the penultimate results from
data holders. In future work, we aim to explore new avenues for
further optimizations, discussions, and better communication.

221

Proceedings on Privacy Enhancing Technologies 2024(4) Koirala et al.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department
of Homeland Security under Grant Award Number 17STQAC0000
1-07-00. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and should not
be interpreted as necessarily representing the official policies, either
expressed or implied, of the U.S. Department of Homeland Security.
The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright
annotation therein.

We would like to thank Yuriy Polyakov, Kurt Rohloff, David
Cousins of Duality Tech., and Nick Genise of Apple Inc. (previously
at Duality Tech.) for their helpful comments and conversations. Ad-
ditionally, we are grateful to Professor Jung Hee Cheon, Mr. Wootae
Kim, and Mr. Jai Hyun Park from CryptoLab and Seoul National
University for their valuable insights related to Domain Extension
Polynomials. Finally, we would like to thank the anonymous re-
viewers for their helpful comments and suggestions.

REFERENCES
[1] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja

Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo
Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov, Saraswathy R.V.,
Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod
Vaikuntanathan, and Vincent Zucca. 2022. OpenFHE: Open-Source Fully Homo-
morphic Encryption Library. In Proceedings of the 10th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography (Los Angeles, CA, USA)
(WAHC’22). Association for Computing Machinery, New York, NY, USA, 53–63.
https://doi.org/10.1145/3560827.3563379

[2] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, et al. 2021.
Homomorphic encryption standard. Protecting privacy through homomorphic
encryption (2021), 31–62.

[3] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada.

[4] Andreea Alexandru, Ahmad Al Badawi, Daniele Micciancio, and Yuriy Polyakov.
2024. Application-Aware Approximate Homomorphic Encryption: Configuring
FHE for Practical Use. Cryptology ePrint Archive (2024).

[5] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. 2012. Multiparty computation with low com-
munication, computation and interaction via threshold FHE. In Advances in
Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings 31. Springer, Springer, Cambridge, UK, 483–501.

[6] Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, and Peter
Rindal. 2021. Multi-party threshold private set intersection with sublinear
communication. In IACR International Conference on Public-Key Cryptography.
Springer, 349–379.

[7] Aslı Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona Samardjiska, and Jelle
Vos. 2021. Practical multi-party private set intersection protocols. IEEE Trans-
actions on Information Forensics and Security 17 (2021), 1–15.

[8] Aner Ben-Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky.
2022. Psimple: Practical multiparty maliciously-secure private set intersection.
In Proceedings of the 2022 ACM on Asia Conference on Computer and Communi-
cations Security. 1098–1112.

[9] Song Bian, Zhou Zhang, Haowen Pan, Ran Mao, Zian Zhao, Yier Jin, and Zhenyu
Guan. 2023. HE3DB: An Efficient and Elastic Encrypted Database Via Arithmetic-
And-Logic Fully Homomorphic Encryption. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. 2930–2944.

[10] Derian Boer, Zahra Ahmadi, and Stefan Kramer. 2019. Privacy preserving
client/vertical-servers classification. In ECML PKDD 2018 Workshops: MIDAS
2018 and PAP 2018, Dublin, Ireland, September 10-14, 2018, Proceedings 3. Springer,
125–140.

[11] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, SamKim, PeterMR
Rasmussen, and Amit Sahai. 2018. Threshold cryptosystems from threshold
fully homomorphic encryption. In Advances in Cryptology–CRYPTO 2018: 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August

19–23, 2018, Proceedings, Part I 38. Springer, 565–596.
[12] Joppe W Bos, Kristin Lauter, and Michael Naehrig. 2014. Private predictive

analysis on encrypted medical data. Journal of biomedical informatics 50 (2014),
234–243.

[13] John P Boyd and Fei Xu. 2009. Divergence (Runge phenomenon) for least-squares
polynomial approximation on an equispaced grid and Mock–Chebyshev subset
interpolation. Appl. Math. Comput. 210, 1 (2009), 158–168.

[14] Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Advances in Cryptology–CRYPTO 2012: 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings. Springer, 868–886.

[15] Zvika Brakerski, Craig Gentry, and Shai Halevi. 2013. Packed ciphertexts in
LWE-based homomorphic encryption. In Public-Key Cryptography–PKC 2013:
16th International Conference on Practice and Theory in Public-Key Cryptography,
Nara, Japan, February 26–March 1, 2013. Proceedings 16. Springer, 1–13.

[16] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)
fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT) 6, 3 (2014), 1–36.

[17] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana
Obbattu, Sruthi Sekar, and Akash Shah. 2021. Efficient Linear Multiparty PSI
and Extensions to Circuit/Quorum PSI. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 1182–1204.

[18] Marina Checri, Renaud Sirdey, Aymen Boudguiga, Jean-Paul Bultel, and Antoine
Choffrut. 2024. On the practical CPAD security of “exact” and threshold FHE
schemes and libraries. Cryptology ePrint Archive (2024).

[19] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2019. Sgxpectre: Stealing intel secrets from sgx enclaves via spec-
ulative execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 142–157.

[20] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI
from fully homomorphic encryption with malicious security. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1223–1237.

[21] Hao Chen, Kim Laine, and Rachel Player. 2017. Simple encrypted arithmetic
library-SEAL v2. 1. In Financial Cryptography and Data Security: FC 2017 Inter-
national Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta,
April 7, 2017, Revised Selected Papers 21. Springer, 3–18.

[22] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast private set intersection from
homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. 1243–1255.

[23] Yu Chen, Min Zhang, Cong Zhang, Minglang Dong, and Weiran Liu. 2022.
Private Set Operations from Multi-Query Reverse Private Membership Test.
Cryptology ePrint Archive (2022).

[24] Jung Hee Cheon, Hyeongmin Choe, Alain Passelègue, Damien Stehlé, and Elias
Suvanto. 2024. Attacks Against the INDCPA-D Security of Exact FHE Schemes.
Cryptology ePrint Archive (2024).

[25] Jung Hee Cheon, Seungwan Hong, and Duhyeong Kim. 2020. Remark on the
security of ckks scheme in practice. Cryptology ePrint Archive (2020).

[26] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. 2012. Multi-party privacy-
preserving set intersection with quasi-linear complexity. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences 95, 8 (2012),
1366–1378.

[27] Jung Hee Cheon, Jinhyuck Jeong, Joohee Lee, and Keewoo Lee. 2017. Privacy-
preserving computations of predictive medical models with minimax approxi-
mation and non-adjacent form. In Financial Cryptography and Data Security: FC
2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema,
Malta, April 7, 2017, Revised Selected Papers 21. Springer, 53–74.

[28] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23. Springer, 409–437.

[29] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. 2020. Efficient homomor-
phic comparison methods with optimal complexity. In Advances in Cryptology–
ASIACRYPT 2020: 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part II 26. Springer, 221–256.

[30] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Keewoo
Lee. 2019. Numerical method for comparison on homomorphically encrypted
numbers. In International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 415–445.

[31] Jung Hee Cheon, Wootae Kim, and Jai Hyun Park. 2022. Efficient Homomorphic
Evaluation on Large Intervals. IEEE Transactions on Information Forensics and
Security 17 (2022), 2553–2568.

[32] Eduardo Chielle, Homer Gamil, and Michail Maniatakos. 2021. Real-time private
membership test using homomorphic encryption. In 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 1282–1287.

222

https://doi.org/10.1145/3560827.3563379

Summation-based Private Segmented Membership Test from Threshold-Fully Homomorphic Encryption Proceedings on Privacy Enhancing Technologies 2024(4)

[33] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: fast fully homomorphic encryption over the torus. Journal of Cryptology
33, 1 (2020), 34–91.

[34] Benny Chor, Niv Gilboa, and Moni Naor. 1997. Private information retrieval by
keywords. (1997).

[35] Michele Ciampi and Claudio Orlandi. 2018. Combining private set-intersection
with secure two-party computation. In Security and Cryptography for Networks:
11th International Conference, SCN 2018, Amalfi, Italy, September 5–7, 2018, Pro-
ceedings. Springer, 464–482.

[36] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. 2009. Fragmentation design for
efficient query execution over sensitive distributed databases. In 2009 29th IEEE
International Conference on Distributed Computing Systems. IEEE, 32–39.

[37] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia
Iliashenko, Kim Laine, andMichael Rosenberg. 2021. Labeled PSI from homomor-
phic encryption with reduced computation and communication. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
1135–1150.

[38] Anamaria Costache, Benjamin R Curtis, Erin Hales, Sean Murphy, Tabitha
Ogilvie, and Rachel Player. 2023. On the precision loss in approximate homomor-
phic encryption. In International Conference on Selected Areas in Cryptography.
Springer, 325–345.

[39] Jack LH Crawford, Craig Gentry, Shai Halevi, Daniel Platt, and Victor Shoup.
2018. Doing real work with FHE: the case of logistic regression. In Proceedings of
the 6thWorkshop on Encrypted Computing &Applied Homomorphic Cryptography.
1–12.

[40] StackExchange Cryptography. 2022. How to choose the large noise when
using noise flooding technique in FHE? https://crypto.stackexchange.
com/questions/101010/how-to-choose-the-large-noise-when-using-noise-
flooding-technique-in-fhe

[41] Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre, Jean-Baptiste
Orfila, Dragos Rotaru, Nigel P Smart, Samuel Tap, and Michael Walter. 2023.
Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding. In Proceedings of the
11th Workshop on Encrypted Computing & Applied Homomorphic Cryptography.
35–46.

[42] Emiliano De Cristofaro and Gene Tsudik. 2010. Practical private set intersec-
tion protocols with linear complexity. In International Conference on Financial
Cryptography and Data Security. Springer, 143–159.

[43] Sumit Kumar Debnath and Ratna Dutta. 2016. Provably secure fair mutual pri-
vate set intersection cardinality utilizing bloom filter. In International Conference
on Information Security and Cryptology. Springer, 505–525.

[44] OpenFHE Discourse. 2022. Appropriate error parameters for the noise flood-
ing. https://openfhe.discourse.group/t/appropriate-error-parameters-for-the-
noise-flooding/95

[45] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection
meets big data: an efficient and scalable protocol. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. 789–800.

[46] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive (2012).

[47] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-
word search and oblivious pseudorandom functions. In Theory of Cryptography:
Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA,
February 10-12, 2005. Proceedings 2. Springer, 303–324.

[48] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. 2004. Efficient private
matching and set intersection. In International conference on the theory and
applications of cryptographic techniques. Springer, 1–19.

[49] Craig Gentry, Shai Halevi, and Nigel P Smart. 2012. Homomorphic evaluation
of the AES circuit. In Annual Cryptology Conference. Springer, 850–867.

[50] Craig Gentry and Zulfikar Ramzan. 2005. Single-database private information
retrieval with constant communication rate. In International Colloquium on
Automata, Languages, and Programming. Springer, 803–815.

[51] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International conference on machine
learning. PMLR, 201–210.

[52] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.

[53] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security. 1–6.

[54] Qian Guo, Denis Nabokov, Elias Suvanto, and Thomas Johansson. 2024. Key
Recovery Attacks on Approximate Homomorphic Encryption with Non-Worst-
Case Noise Flooding Countermeasures. In 33rd USENIX Security Symposium
(USENIX Security 24). Philadelphia, PA: USENIX Association.

[55] Shai Halevi. 2017. Homomorphic encryption. In Tutorials on the Foundations of
Cryptography: Dedicated to Oded Goldreich. Springer, 219–276.

[56] Thang Hoang, Jorge Guajardo, and Attila A Yavuz. 2020. MACAO: Amaliciously-
secure and client-efficient active ORAM framework. Cryptology ePrint Archive

(2020).
[57] Thang Hoang, Attila A Yavuz, and Jorge Guajardo. 2020. A multi-server oram

frameworkwith constant client bandwidth blowup. ACMTransactions on Privacy
and Security (TOPS) 23, 1 (2020), 1–35.

[58] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. 2020. On de-
ploying secure computing: Private intersection-sum-with-cardinality. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 370–389.

[59] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, David Shanahan, and Moti Yung. 2017. Private intersection-sum protocol
with applications to attributing aggregate ad conversions. Cryptology ePrint
Archive (2017).

[60] Irina Ivanova. 2022. Rich Americans hide “Billions” offshore thanks to Tax
Loophole, Senate panel finds. https://www.cbsnews.com/news/tax-evasion-
billions-offshore-fatca-tax-reporting-loophole-senate-finance-committee-
robert-brockman/

[61] Yuting Jiang, Jianghong Wei, and Jing Pan. 2022. Publicly verifiable private
set intersection from homomorphic encryption. In International Symposium on
Security and Privacy in Social Networks and Big Data. Springer, 117–137.

[62] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and
Christian Weinert. 2019. Mobile private contact discovery at scale. In 28th
USENIX Security Symposium (USENIX Security 19). 1447–1464.

[63] Tanveer Khan, Alexandros Bakas, and Antonis Michalas. 2021. Blind faith:
Privacy-preserving machine learning using function approximation. In 2021
IEEE Symposium on Computers and Communications (ISCC). IEEE, 1–7.

[64] Eunkyung Kim, Jinhyuck Jeong, Hyojin Yoon, Younghyun Kim, Jihoon Cho,
and Jung Hee Cheon. 2020. How to securely collaborate on data: Decentralized
threshold he and secure key update. IEEE Access 8 (2020), 191319–191329.

[65] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang, et al.
2018. Secure logistic regression based on homomorphic encryption: Design and
evaluation. JMIR medical informatics 6, 2 (2018), e8805.

[66] Lea Kissner and Dawn Song. 2005. Privacy-preserving set operations. In Annual
International Cryptology Conference. Springer, 241–257.

[67] Kamil Kluczniak and Giacomo Santato. 2023. On Circuit Private, Multikey and
Threshold Approximate Homomorphic Encryption. Cryptology ePrint Archive
(2023).

[68] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT extension for
transferring short secrets. In Advances in Cryptology–CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II. Springer, 54–70.

[69] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-
ficient batched oblivious PRF with applications to private set intersection. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. 818–829.

[70] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
2017. Practical multi-party private set intersection from symmetric-key tech-
niques. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 1257–1272.

[71] Anunay Kulshrestha and Jonathan Mayer. 2021. Identifying harmful media in
{End-to-End} encrypted communication: Efficient private membership compu-
tation. In 30th USENIX Security Symposium (USENIX Security 21). 893–910.

[72] Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication is not needed: Single
database, computationally-private information retrieval. In Proceedings 38th
annual symposium on foundations of computer science. IEEE, 364–373.

[73] Thijs Laarhoven, Michele Mosca, and Joop Van De Pol. 2013. Solving the
shortest vector problem in lattices faster using quantum search. In Post-Quantum
Cryptography: 5th International Workshop, PQCrypto 2013, Limoges, France, June
4-7, 2013. Proceedings 5. Springer, 83–101.

[74] Baiyu Li and Daniele Micciancio. 2021. On the security of homomorphic en-
cryption on approximate numbers. In Advances in Cryptology–EUROCRYPT
2021: 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part
I 40. Springer, 648–677.

[75] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. 2022. Securing
approximate homomorphic encryption using differential privacy. In Annual
International Cryptology Conference. Springer, 560–589.

[76] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In 2015 IEEE symposium on security
and privacy. IEEE, 605–622.

[77] Catherine Meadows. 1986. A more efficient cryptographic matchmaking proto-
col for use in the absence of a continuously available third party. In 1986 IEEE
Symposium on Security and Privacy. IEEE, 134–134.

[78] Daniele Micciancio and Oded Regev. 2009. Lattice-based cryptography. In
Post-quantum cryptography. Springer, 147–191.

[79] MicrosoftAPSI. 2021. GitHub - microsoftAPSI: APSI is a C++ library for
Asymmetric (unlabeled or labeled) Private Set Intersection. — github.com.
https://github.com/microsoft/APSI

223

https://crypto.stackexchange.com/questions/101010/how-to-choose-the-large-noise-when-using-noise-flooding-technique-in-fhe
https://crypto.stackexchange.com/questions/101010/how-to-choose-the-large-noise-when-using-noise-flooding-technique-in-fhe
https://crypto.stackexchange.com/questions/101010/how-to-choose-the-large-noise-when-using-noise-flooding-technique-in-fhe
https://openfhe.discourse.group/t/appropriate-error-parameters-for-the-noise-flooding/95
https://openfhe.discourse.group/t/appropriate-error-parameters-for-the-noise-flooding/95
https://www.cbsnews.com/news/tax-evasion-billions-offshore-fatca-tax-reporting-loophole-senate-finance-committee-robert-brockman/
https://www.cbsnews.com/news/tax-evasion-billions-offshore-fatca-tax-reporting-loophole-senate-finance-committee-robert-brockman/
https://www.cbsnews.com/news/tax-evasion-billions-offshore-fatca-tax-reporting-loophole-senate-finance-committee-robert-brockman/
https://github.com/microsoft/APSI

Proceedings on Privacy Enhancing Technologies 2024(4) Koirala et al.

[80] AtsukoMiyaji, Kazuhisa Nakasho, and Shohei Nishida. 2017. Privacy-preserving
integration of medical data: a practical multiparty private set intersection. Jour-
nal of medical systems 41 (2017), 1–10.

[81] Atsuko Miyaji and Shohei Nishida. 2015. A scalable multiparty private set
intersection. In International conference on network and system security. Springer,
376–385.

[82] Daniel Morales, Isaac Agudo, and Javier Lopez. 2023. Private set intersection: A
systematic literature review. Computer Science Review 49 (2023), 100567.

[83] Muhammad Haris Mughees and Ling Ren. 2023. Vectorized batch private
information retrieval. In 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 437–452.

[84] Ofri Nevo, Ni Trieu, and Avishay Yanai. 2021. Simple, fast malicious multiparty
private set intersection. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 1151–1165.

[85] John Newman and Ritchie Amy. 2023. Financial privacy rule. https://www.ftc.
gov/legal-library/browse/rules/financial-privacy-rule

[86] Department of Homeland Security. 2022. DHS Use Cases of Privacy Enhancing
Technologies. https://pets4hse.org/PETS4HSEUseCases.pdf

[87] OpenFHE. 2022. OpenFHE Noise-Flooding and Static Noise Estima-
tion. https://github.com/openfheorg/openfhe-development/blob/main/src/pke/
examples/CKKS_NOISE_FLOODING.md

[88] Michele Orrù, Emmanuela Orsini, and Peter Scholl. 2017. Actively secure 1-
out-of-N OT extension with application to private set intersection. In Topics in
Cryptology–CT-RSA 2017: The Cryptographers’ Track at the RSA Conference 2017,
San Francisco, CA, USA, February 14–17, 2017, Proceedings. Springer, 381–396.

[89] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phas-
ing: Private set intersection using permutation-based hashing. In 24th USENIX
Security Symposium (USENIX Security 15). 515–530.

[90] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C Williams.
2009. Secure two-party computation is practical. In Advances in Cryptology–
ASIACRYPT 2009: 15th International Conference on the Theory and Application of
Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceed-
ings 15. Springer, 250–267.

[91] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai.
2019. Efficient circuit-based PSI with linear communication. In Advances in
Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Darmstadt, Germany, May
19–23, 2019, Proceedings, Part III 38. Springer, 122–153.

[92] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. 2018.
Efficient circuit-based PSI via cuckoo hashing. InAnnual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 125–157.

[93] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster private set
intersection based on {OT} extension. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 797–812.

[94] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2018. Scalable private set
intersection based on OT extension. ACM Transactions on Privacy and Security
(TOPS) 21, 2 (2018), 1–35.

[95] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. 2011. CryptDB: Protecting confidentiality with encrypted query
processing. In Proceedings of the twenty-third ACM symposium on operating
systems principles. 85–100.

[96] The Washington Post. 2023. Foreign banks to help U.S. fight tax eva-
sion. https://www.washingtonpost.com/business/economy/foreign-
banks-to-help-us-fight-tax-evasion/2014/06/02/52b3919c-ea92-11e3-93d2-
edd4be1f5d9e_story.html

[97] Sara Ramezanian, Tommi Meskanen, Masoud Naderpour, Ville Junnila, and
Valtteri Niemi. 2020. Private membership test protocol with low communication
complexity. Digital Communications and Networks 6, 3 (2020), 321–332.

[98] Peter Rindal and Mike Rosulek. 2016. Faster malicious 2-party secure computa-
tion with {Online/Offline} dual execution. In 25th USENIX Security Symposium
(USENIX Security 16). 297–314.

[99] Peter Rindal and Mike Rosulek. 2017. Improved private set intersection against
malicious adversaries. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 235–259.

[100] Jason Schlessman. 2002. Approximation of the sigmoid function and its derivative
using a minimax approach. Ph. D. Dissertation. Lehigh University.

[101] Nigel P Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD
operations. Designs, codes and cryptography 71 (2014), 57–81.

[102] Yongha Son and Jinhyuck Jeong. 2023. PSI with computation or Circuit-PSI for
Unbalanced Sets from Homomorphic Encryption. Cryptology ePrint Archive
(2023).

[103] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas, and
N Asokan. 2017. The circle game: Scalable private membership test using trusted
hardware. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. 31–44.

[104] Adithya Vadapalli, Ryan Henry, and Ian Goldberg. 2023. Duoram: A Bandwidth-
Efficient Distributed ORAM for 2-and 3-Party Computation. In 32nd USENIX
Security Symposium.

[105] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdom with tran-
sient {Out-of-Order} execution. In 27th USENIX Security Symposium (USENIX
Security 18). 991–1008.

[106] Ke Coby Wang and Michael K Reiter. 2018. How to end password reuse on the
web. arXiv preprint arXiv:1805.00566 (2018).

[107] Wenli Wang, Shundong Li, Jiawei Dou, and Runmeng Du. 2020. Privacy-
preserving mixed set operations. Information Sciences 525 (2020), 67–81.

[108] ZhushengWang, Karim Banawan, and Sennur Ulukus. 2021. Multi-party private
set intersection: An information-theoretic approach. IEEE Journal on Selected
Areas in Information Theory 2, 1 (2021), 366–379.

[109] Lifei Wei, Jihai Liu, Lei Zhang, and Wuji Zhang. 2022. Efficient and collusion
resistant multi-party private set intersection protocols for large participants
and small sets setting. In International Symposium on Cyberspace Safety and
Security. Springer, 118–132.

[110] ACC Yao. 1986. How to generate and exchange secrets. In—27th Annual Sym-
posium on Foundations of Computer Science.

[111] Jason HM Ying, Shuwei Cao, Geong Sen Poh, Jia Xu, and Hoon Wei Lim. 2022.
PSI-stats: private set intersection protocols supporting secure statistical func-
tions. In International Conference on Applied Cryptography and Network Security.
Springer, 585–604.

[112] En Zhang, Feng-Hao Liu, Qiqi Lai, Ganggang Jin, and Yu Li. 2019. Efficient multi-
party private set intersection against malicious adversaries. In Proceedings of
the 2019 ACM SIGSAC conference on cloud computing security workshop. 93–104.

A PROTOCOL PARAMETERS
We analyzed various levels of parameters for the DEP procedure
and Chebyshev-based approximation and how they affect the per-
formance and accuracy of our protocol for PSMT. Using 𝐵(𝑥) =
𝑥 − 4

27𝑥
3, it is imperative to maintain 𝐿 below 1.5 ×

√
3 while us-

ing Domain Extension Polynimials [31]. Thus, for expanding the
domain range, it requires increasing 𝑅 and 𝑛 so that [−𝐿𝑛𝑅, 𝐿𝑛𝑅]
adequately accommodates large input sets without amplifying er-
rors and computation. However, using arbitrary large values for 𝑅
and 𝑛 would require very high depths for homomorphic computa-
tion and amplify errors in the approximation. Using smaller values
of 𝐿, especially close to 1.5, greatly increases the accuracy of the
DEP method, but this results in larger values for other parameters,
incurring very high computational costs.

The optimal DEP, Chebyshev, and optimization parameters for
running our protocol for various senders’ set sizes are provided in
Table 5. 𝐾 and 𝑆 are set to 1 and 10, respectively, for the VAF. |X|
denotes the size of the senders’s set. "Non-intersection" denotes the
summation value of ciphertext’s slots when there is no intersection,
and "Intersection" similarly denotes the summation value of cipher-
text’s slots during an intersection. To confirm an intersection for
𝑙 < 4096, setting threshold 𝜏 > 200 is sufficient for the parameters
described in Table 5. A higher value of 𝜏 handles the precision loss
occurring due to the additional added noise from noise-smudging
in cases where 𝑧 =

∑𝑙−1
𝑖=1 etan𝑖 overflow beyond negligible values.

The value 𝜏 can be adjusted to higher values for a higher number
of parties. We note that the parameters we provide are highly opti-
mized for the particular computations, and some values in Table 5
were found empirically.

224

https://www.ftc.gov/legal-library/browse/rules/financial-privacy-rule
https://www.ftc.gov/legal-library/browse/rules/financial-privacy-rule
https://pets4hse.org/PETS4HSEUseCases.pdf
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://www.washingtonpost.com/business/economy/foreign-banks-to-help-us-fight-tax-evasion/2014/06/02/52b3919c-ea92-11e3-93d2-edd4be1f5d9e_story.html
https://www.washingtonpost.com/business/economy/foreign-banks-to-help-us-fight-tax-evasion/2014/06/02/52b3919c-ea92-11e3-93d2-edd4be1f5d9e_story.html
https://www.washingtonpost.com/business/economy/foreign-banks-to-help-us-fight-tax-evasion/2014/06/02/52b3919c-ea92-11e3-93d2-edd4be1f5d9e_story.html

Summation-based Private Segmented Membership Test from Threshold-Fully Homomorphic Encryption Proceedings on Privacy Enhancing Technologies 2024(4)

Table 5: Our protocol parameters to solve PSMT for various senders’ set sizes

|X| DEP Chebyshev Parameters Optimization Aggregation Result
L R n 𝑐 𝜅 𝑗 𝑘 𝜌 Non-intersection Intersection

27 2.50 21.0 2 27 3.4 × 10−5 3 3 2.5 3.1 × 10−5 1528.18
28 2.56 16.0 3 27 3.2 × 10−1 1 3 2.5 2.9 × 10−1 1526.54
210 2.58 24.0 4 27 1.8 × 10−6 4 3 2.5 1.1 × 10−4 1525.88
213 2.58 27.5 6 27 5.6 × 10−3 4 3 2.5 4.7 × 10−3 1525.88
215 2.58 43.5 7 27 3.7 × 10−1 4 3 2.5 4.9 × 10−1 1526.63
220 2.59 200.0 9 247 1.2 × 10−1 2 3 2.5 2.2 × 10−1 1526.11
221 2.59 400.0 9 247 7.3 × 10−1 4 3 2.7 8.1 × 10−1 2824.66
222 2.59 800.0 9 247 7.6 × 10−1 6 3 2.7 8.8 × 10−1 2824.29
223 2.59 1600.0 9 247 6.3 × 10−1 8 3 2.7 9.1 × 10−1 2823.91
224 2.59 3200.0 9 247 7.9 × 10−1 10 3 2.7 8.8 × 10−1 2824.20
225 2.59 6400.0 9 247 2.7 × 10−1 12 3 2.7 7.4 × 10−1 2823.92

225

	Abstract
	1 Introduction
	2 Related Work
	2.1 Private Set Intersection (PSI)
	2.2 Multi-Party PSI (MPSI)
	2.3 Other Similar Methods

	3 Preliminaries & Definitions
	3.1 Fully Homomorphic Encryption
	3.2 Threshold FHE
	3.3 Private Segmented Membership Test (PSMT)

	4 PSMT Protocol
	4.1 Basic Protocol Without Approximation
	4.2 Novel Value Annihilating Function (VAF)
	4.3 Polynomial Approximation of VAF
	4.4 Security
	4.5 Choosing Appropriate Parameters
	4.6 Asymptotic Complexity Analysis
	4.7 Discussion

	5 Challenges
	5.1 Increasing Throughput
	5.2 Supporting Larger Sets
	5.3 Reducing False Positives

	6 Evaluation
	7 Conclusion
	Acknowledgments
	References
	A Protocol Parameters

