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Solution Verification
of Anomalous Waves
in Nonideal Gases

Solution verification methods for anomalous waves in inviscid and viscous van der Waals
gases are presented. Anomalous waves are admissible in a single gas phase material when
isentropes are concave, rendering the sound speed to have the unusual feature of decreasing
with increasing density. The anomalous waves considered include rarefaction shocks and
continuous compression fans. A previously known exact solution of inviscid continuous fans
with a van der Waals equation of state is applied to anomalous waves. An exact solution for
viscous shocks in an ideal gas is described and utilized for verification of the viscous
numerical solutions. Solutions and simulations of viscous and inviscid van der Waals gases
in shock tubes are presented with both conventional and anomalous waves. Shock tube
solutions are used for verification of numerical simulations. Highly resolved viscous
solutions are obtained with a simple explicit Euler time advancement scheme coupled with a
second-order central spatial discretization. Inviscid simulations are performed with a third-
order Runge—Kutta method in time and a fifth-order mapped weighted essentially
nonoscillatory (WENOSM) discretization. The WENOSM method is novelly supplemented
with a global Lax—Friedrichs flux-splitting in space, as local flux-splitting methods fail when

changes in the sound speed are nonmonotonic. [DOI: 10.1115/1.4065834]

1 Introduction

Verification methods for numerical simulations of compressible
flows are often restricted to systems modeled with the ideal gas
equations; these yield classical compression shocks and rarefaction
fans. Our focus will be on the verification of numerical methods
when anomalous waves are present in viscous and inviscid nonideal
gases. The anomalous waves in question refer to discontinuous
rarefactions, continuous compressions, and composite waves.
Although anomalous behavior may occur under a variety of
conditions, we are interested in anomalous waves that form in a
single gas phase material when isentropes in the pressure-specific
volume plane are concave. When this occurs, the sound speed
decreases as density increases, allowing for the formation of
anomalous waves. When working with materials that meet the
conditions for anomalous wave formation, it is important to ensure
that numerical methods correctly predict the anomalous behavior. In
the case of anomalous shock waves, the second law of thermody-
namics may not be sufficient to distinguish correct inviscid shock
solutions, and viscous shock solutions are required. We will utilize
existing exact solutions for waves in inviscid van der Waals gases to
construct analytical solutions for shock tubes. These inviscid
solutions are also compared to numerical simulations of shock
tubes containing a viscous van der Waals gas. These solutions will
be used to demonstrate solution verification with nonideal gases and
anomalous waves. The results presented here are an extension of the
inviscid study of Pielemeier and Powers [1]. This work includes
more detailed verification and an extension to viscous solutions.

We present a short review of convexity, as it is the cornerstone for
the admission of anomalous waves. Defined on an interval [v1, v2], a
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real valued function is convex if the line segment connecting any
two points on the curve lies entirely above the curve between the two
points. This is equivalent to the epigraph of the function being a
convex set, with the epigraph defined as the set of points on or above
the graph of a function. If this condition is not met, the epigraph is
not a convex set, and the function is nonconvex. Example isentropes
are shown in Fig. 1. The shaded areas represent the epigraphs; the
epigraph in Fig. 1(a) forms a convex set, and in Fig. 1(b) a
nonconvex set. The convexity of a function can also be determined
by the second derivative of the function, for which positive and
negative values correspond to convex and concave functions,
respectively; this will be our primary method of describing
convexity. If the second derivative of the function everywhere on
the domain is positive semidefinite, then the function is convex. If
the second derivative is everywhere negative on the domain, the
function is concave. Following the terminology of Wendroft [2,3]
and Heuzé et al. [4], if the second derivative is both positive and
negative within the domain, we will refer to the function as
nonconvex on the domain.

The first studies on the existence and theory of anomalous waves
were done by Bethe [5], Zel’dovich [6], and later Thompson [7].
Bethe and Zel’dovich established that given a particular set of
conditions, anomalous waves may occur in gases near the critical
point of the thermodynamic vapor dome. In this anomalous region,
sometimes called the Bethe—Zel’dovich—-Thompson (BZT) region,
the isentropes in the pressure-specific volume plane are concave,
and discontinuous rarefaction shocks and continuous compression
fans are admissible. Thompson [7] gave the dimensionless
fundamental derivative as an indicator of the convexity of
isentropes, the sign of which is determined by a second derivative
of pressure with respect to specific volume. Positive values of this
fundamental derivative indicate convex isentropes, and negative
values indicate concave isentropes. Lambrakis and Thompson [8]
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